Deposition of MgO Nanoparticles by Laser Pyrolysis

Hala Mahmood Abdulwaahb, B. G. Rasheed, Hanadi H. Altawil
{"title":"Deposition of MgO Nanoparticles by Laser Pyrolysis","authors":"Hala Mahmood Abdulwaahb, B. G. Rasheed, Hanadi H. Altawil","doi":"10.29194/njes.25010020","DOIUrl":null,"url":null,"abstract":"Magnesium oxide nanoparticles were deposited by laser pyrolysis process. Three types of lasers were employed CW CO2, Q-switched Nd-YAG (short pulses) and long pulses Nd-YAG lasers. The size and density of nanoparticles vary with laser energy, power, pulse duration and the scanning speed of the laser. In this method, MgO nanoparticles were deposited by a laser beam on a quartz substrate from aqueous solution of magnesium nitrate. AFM images reveal formation of small nanoparticle size of 24.5 nm with surface roughness 6.97nm by Q-switched Nd-YAG laser (10 ns) when the energy was 1J. While for CO2 laser, the smallest size was 18.8 nm at 0.4mm/s scanning speed with surface roughness 5.21nm at the same scanning speed. Moreover, long Nd-YAG pulses laser produces relatively larger average size of 37.5nm at 0.8ms pulse duration. The absorption spectra from UV-Visible spectroscopy were also conducted. The best absorption intensity was obtained at a wavelength ranging between 420-430 nm for both lasers. Finally, Thermal analysis using COMSOL Multiphysics software for the deposition process reveals that maximum temperature about 440Kfor Q-Switched Nd-YAG laser at 1J laser energy. While for RF CO2 laser, the maximum temperature obtained at 0.4mm/s scanning speed is 850K.This work provides a good knowledge for the deposition of nanoparticles using laser beams.","PeriodicalId":7470,"journal":{"name":"Al-Nahrain Journal for Engineering Sciences","volume":"139 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Nahrain Journal for Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29194/njes.25010020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Magnesium oxide nanoparticles were deposited by laser pyrolysis process. Three types of lasers were employed CW CO2, Q-switched Nd-YAG (short pulses) and long pulses Nd-YAG lasers. The size and density of nanoparticles vary with laser energy, power, pulse duration and the scanning speed of the laser. In this method, MgO nanoparticles were deposited by a laser beam on a quartz substrate from aqueous solution of magnesium nitrate. AFM images reveal formation of small nanoparticle size of 24.5 nm with surface roughness 6.97nm by Q-switched Nd-YAG laser (10 ns) when the energy was 1J. While for CO2 laser, the smallest size was 18.8 nm at 0.4mm/s scanning speed with surface roughness 5.21nm at the same scanning speed. Moreover, long Nd-YAG pulses laser produces relatively larger average size of 37.5nm at 0.8ms pulse duration. The absorption spectra from UV-Visible spectroscopy were also conducted. The best absorption intensity was obtained at a wavelength ranging between 420-430 nm for both lasers. Finally, Thermal analysis using COMSOL Multiphysics software for the deposition process reveals that maximum temperature about 440Kfor Q-Switched Nd-YAG laser at 1J laser energy. While for RF CO2 laser, the maximum temperature obtained at 0.4mm/s scanning speed is 850K.This work provides a good knowledge for the deposition of nanoparticles using laser beams.
激光热解法制备MgO纳米颗粒
采用激光热解法制备了氧化镁纳米颗粒。采用连续CO2、调q Nd-YAG(短脉冲)和长脉冲Nd-YAG三种激光器。纳米粒子的大小和密度随激光能量、功率、脉冲持续时间和激光扫描速度的变化而变化。在该方法中,用激光束将MgO纳米颗粒沉积在硝酸镁水溶液中的石英衬底上。AFM图像显示,当能量为1J时,调q Nd-YAG激光器(10 ns)形成的纳米颗粒尺寸为24.5 nm,表面粗糙度为6.97nm。而对于CO2激光器,在0.4mm/s扫描速度下,最小尺寸为18.8 nm,相同扫描速度下,表面粗糙度为5.21nm。长Nd-YAG脉冲激光器在0.8ms脉冲持续时间下产生的平均尺寸较大,为37.5nm。并进行了紫外-可见光谱分析。两种激光器的最佳吸收强度均在420 ~ 430 nm波长范围内。最后,利用COMSOL Multiphysics软件对沉积过程进行热分析,发现在1J激光能量下,调q Nd-YAG激光器的最高温度约为440k。而对于RF CO2激光器,在0.4mm/s扫描速度下获得的最高温度为850K。这项工作为利用激光沉积纳米粒子提供了良好的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信