Quantum Interpolating Ensemble: Bi-orthogonal Polynomials and Average Entropies

IF 0.9 4区 数学 Q4 PHYSICS, MATHEMATICAL
Lu Wei, N. Witte
{"title":"Quantum Interpolating Ensemble: Bi-orthogonal Polynomials and Average Entropies","authors":"Lu Wei, N. Witte","doi":"10.1142/S2010326322500551","DOIUrl":null,"url":null,"abstract":"The density matrix formalism is a fundamental tool in studying various problems in quantum information processing. In the space of density matrices, the most well-known measures are the Hilbert-Schmidt and Bures-Hall ensembles. In this work, the averages of quantum purity and von Neumann entropy for an ensemble that interpolates between these two major ensembles are explicitly calculated for finite-dimensional systems. The proposed interpolating ensemble is a specialization of the $\\theta$-deformed Cauchy-Laguerre two-matrix model and new results for this latter ensemble are given in full generality, including the recurrence relations satisfied by their associated bi-orthogonal polynomials when $\\theta$ assumes positive integer values.","PeriodicalId":54329,"journal":{"name":"Random Matrices-Theory and Applications","volume":"581 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Matrices-Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S2010326322500551","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The density matrix formalism is a fundamental tool in studying various problems in quantum information processing. In the space of density matrices, the most well-known measures are the Hilbert-Schmidt and Bures-Hall ensembles. In this work, the averages of quantum purity and von Neumann entropy for an ensemble that interpolates between these two major ensembles are explicitly calculated for finite-dimensional systems. The proposed interpolating ensemble is a specialization of the $\theta$-deformed Cauchy-Laguerre two-matrix model and new results for this latter ensemble are given in full generality, including the recurrence relations satisfied by their associated bi-orthogonal polynomials when $\theta$ assumes positive integer values.
量子内插系综:双正交多项式和平均熵
密度矩阵形式化是研究量子信息处理中各种问题的基本工具。在密度矩阵的空间中,最著名的测度是Hilbert-Schmidt和Bures-Hall系综。在这项工作中,在这两个主要系综之间插入的系综的量子纯度和冯·诺伊曼熵的平均值被明确地计算为有限维系统。本文提出的插值系综是$\theta$变形Cauchy-Laguerre二矩阵模型的专一化,并给出了该系综的新结果,包括当$\theta$为正整数时,其相关的双正交多项式所满足的递推关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Random Matrices-Theory and Applications
Random Matrices-Theory and Applications Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.90
自引率
11.10%
发文量
29
期刊介绍: Random Matrix Theory (RMT) has a long and rich history and has, especially in recent years, shown to have important applications in many diverse areas of mathematics, science, and engineering. The scope of RMT and its applications include the areas of classical analysis, probability theory, statistical analysis of big data, as well as connections to graph theory, number theory, representation theory, and many areas of mathematical physics. Applications of Random Matrix Theory continue to present themselves and new applications are welcome in this journal. Some examples are orthogonal polynomial theory, free probability, integrable systems, growth models, wireless communications, signal processing, numerical computing, complex networks, economics, statistical mechanics, and quantum theory. Special issues devoted to single topic of current interest will also be considered and published in this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信