Simulation-Based Performance Prediction of HPC Applications: A Case Study of HPL

Q4 Social Sciences
Gen Xu, H. Ibeid, Xin Jiang, V. Svilan, Zhaojuan Bian
{"title":"Simulation-Based Performance Prediction of HPC Applications: A Case Study of HPL","authors":"Gen Xu, H. Ibeid, Xin Jiang, V. Svilan, Zhaojuan Bian","doi":"10.1109/HUSTProtools51951.2020.00016","DOIUrl":null,"url":null,"abstract":"We propose a simulation-based approach for performance modeling of parallel applications on high-performance computing platforms. Our approach enables full-system performance modeling: (1) the hardware platform is represented by an abstract yet high-fidelity model; (2) the computation and communication components are simulated at a functional level, where the simulator allows the use of the components native interface; this results in a (3) fast and accurate simulation of full HPC applications with minimal modifications to the application source code. This hardware/software hybrid modeling methodology allows for low overhead, fast, and accurate exascale simulation and can be easily carried out on a standard client platform (desktop or laptop). We demonstrate the capability and scalability of our approach with High Performance LINPACK (HPL), the benchmark used to rank supercomputers in the TOP500 list. Our results show that our modeling approach can accurately and efficiently predict the performance of HPL at the scale of the TOP500 list supercomputers. For instance, the simulation of HPL on Frontera takes less than five hours with an error rate of four percent.","PeriodicalId":38836,"journal":{"name":"Meta: Avaliacao","volume":"6 1","pages":"81-88"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meta: Avaliacao","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUSTProtools51951.2020.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 4

Abstract

We propose a simulation-based approach for performance modeling of parallel applications on high-performance computing platforms. Our approach enables full-system performance modeling: (1) the hardware platform is represented by an abstract yet high-fidelity model; (2) the computation and communication components are simulated at a functional level, where the simulator allows the use of the components native interface; this results in a (3) fast and accurate simulation of full HPC applications with minimal modifications to the application source code. This hardware/software hybrid modeling methodology allows for low overhead, fast, and accurate exascale simulation and can be easily carried out on a standard client platform (desktop or laptop). We demonstrate the capability and scalability of our approach with High Performance LINPACK (HPL), the benchmark used to rank supercomputers in the TOP500 list. Our results show that our modeling approach can accurately and efficiently predict the performance of HPL at the scale of the TOP500 list supercomputers. For instance, the simulation of HPL on Frontera takes less than five hours with an error rate of four percent.
基于仿真的高性能计算应用性能预测:以高性能计算应用为例
我们提出了一种基于仿真的方法,用于高性能计算平台上并行应用程序的性能建模。我们的方法实现了全系统性能建模:(1)硬件平台由抽象但高保真的模型表示;(2)在功能层面对计算和通信组件进行模拟,其中模拟器允许使用组件的本地接口;这样可以快速准确地模拟完整的HPC应用程序,而对应用程序源代码的修改最少。这种硬件/软件混合建模方法允许低开销、快速和准确的百亿亿级模拟,并且可以很容易地在标准客户端平台(台式机或笔记本电脑)上执行。我们用高性能LINPACK (HPL)演示了我们的方法的能力和可扩展性,HPL是用于在TOP500列表中对超级计算机进行排名的基准。结果表明,我们的建模方法可以准确有效地预测TOP500超级计算机规模下的HPL性能。例如,在Frontera上模拟HPL只需不到5个小时,错误率为4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Meta: Avaliacao
Meta: Avaliacao Social Sciences-Education
CiteScore
0.40
自引率
0.00%
发文量
13
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信