The Marshall–Olkin Transmuted-G Family of Distributions

Q3 Mathematics
A. Afify, H. Yousof, M. Alizadeh, I. Ghosh, Samik Ray, G. Ozel
{"title":"The Marshall–Olkin Transmuted-G Family of Distributions","authors":"A. Afify, H. Yousof, M. Alizadeh, I. Ghosh, Samik Ray, G. Ozel","doi":"10.1515/eqc-2020-0009","DOIUrl":null,"url":null,"abstract":"Abstract We introduce a new family of univariate continuous distributions called the Marshall–Olkin transmuted-G family which extends the transmuted-G family pioneered by Shaw and Buckley (2007). Special models for the new family are provided. Some of its mathematical properties including quantile measure, explicit expressions for the ordinary and incomplete moments, generating function, Rényi and Shannon entropies, order statistics and probability weighted moments are derived. The estimation of the model parameters is performed by maximum likelihood. The flexibility of the proposed family is illustrated by means of two applications to real data sets.","PeriodicalId":37499,"journal":{"name":"Stochastics and Quality Control","volume":"19 1","pages":"79 - 96"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Quality Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eqc-2020-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract We introduce a new family of univariate continuous distributions called the Marshall–Olkin transmuted-G family which extends the transmuted-G family pioneered by Shaw and Buckley (2007). Special models for the new family are provided. Some of its mathematical properties including quantile measure, explicit expressions for the ordinary and incomplete moments, generating function, Rényi and Shannon entropies, order statistics and probability weighted moments are derived. The estimation of the model parameters is performed by maximum likelihood. The flexibility of the proposed family is illustrated by means of two applications to real data sets.
马歇尔-奥尔金变形- g分布族
摘要本文引入了一个新的单变量连续分布族,称为Marshall-Olkin变形- g族,它扩展了Shaw和Buckley(2007)首创的变形- g族。为新家庭提供了特殊型号。导出了它的一些数学性质,包括分位数测度、普通矩和不完全矩的显式表达式、生成函数、rsamunyi和Shannon熵、序统计量和概率加权矩。模型参数的估计采用极大似然法。通过对实际数据集的两个应用,说明了所提出的家族的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastics and Quality Control
Stochastics and Quality Control Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信