{"title":"Reflection of simple wave at vapor-liquid interface accompanied with phase change","authors":"T. Yano","doi":"10.1121/2.0000887","DOIUrl":null,"url":null,"abstract":"When a sound in a vapor is reflected at an interface between the vapor and its condensed phase, the reflected wave is affected by a reflection-induced phase change at the interface, for which the macroscopic continuum theory cannot be applied and the boundary-value problem of the Boltzmann equation should be solved. We numerically solve the Boltzmann-Krook-Welander equation with a finite-difference method, and clarify the characteristics of the reflected wave and the reflection-indeced phase change.When a sound in a vapor is reflected at an interface between the vapor and its condensed phase, the reflected wave is affected by a reflection-induced phase change at the interface, for which the macroscopic continuum theory cannot be applied and the boundary-value problem of the Boltzmann equation should be solved. We numerically solve the Boltzmann-Krook-Welander equation with a finite-difference method, and clarify the characteristics of the reflected wave and the reflection-indeced phase change.","PeriodicalId":20469,"journal":{"name":"Proc. Meet. Acoust.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. Meet. Acoust.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/2.0000887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
When a sound in a vapor is reflected at an interface between the vapor and its condensed phase, the reflected wave is affected by a reflection-induced phase change at the interface, for which the macroscopic continuum theory cannot be applied and the boundary-value problem of the Boltzmann equation should be solved. We numerically solve the Boltzmann-Krook-Welander equation with a finite-difference method, and clarify the characteristics of the reflected wave and the reflection-indeced phase change.When a sound in a vapor is reflected at an interface between the vapor and its condensed phase, the reflected wave is affected by a reflection-induced phase change at the interface, for which the macroscopic continuum theory cannot be applied and the boundary-value problem of the Boltzmann equation should be solved. We numerically solve the Boltzmann-Krook-Welander equation with a finite-difference method, and clarify the characteristics of the reflected wave and the reflection-indeced phase change.