Optical Flow-Based Algorithm Analysis to Detect Human Emotion from Eye Movement-Image Data

Q3 Computer Science
T. T. Zizi, S. Ramli, Muslihah Wook, M. Shukran
{"title":"Optical Flow-Based Algorithm Analysis to Detect Human Emotion from Eye Movement-Image Data","authors":"T. T. Zizi, S. Ramli, Muslihah Wook, M. Shukran","doi":"10.18178/joig.11.1.53-60","DOIUrl":null,"url":null,"abstract":"One of the popular methods for the recognition of human emotions such as happiness, sadness and shock is based on the movement of facial features. Motion vectors that show these movements can be calculated by using optical flow algorithms. In this method, for detecting emotions, the resulted set of motion vectors is compared with a standard facial movement template caused by human emotional changes. In this paper, a new method is introduced to compute the quantity of likeness towards a particular emotion to make decisions based on the importance of obtained vectors from an optical flow approach. The current study uses a feature point tracking technique separately applied to the five facial image regions (eyebrows, eyes, and mouth) to identify basic emotions. Primarily, this research will be focusing on eye movement regions. For finding the vectors, one of the efficient optical flow methods is using the pre-experiment as explained further below.","PeriodicalId":36336,"journal":{"name":"中国图象图形学报","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国图象图形学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.18178/joig.11.1.53-60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 5

Abstract

One of the popular methods for the recognition of human emotions such as happiness, sadness and shock is based on the movement of facial features. Motion vectors that show these movements can be calculated by using optical flow algorithms. In this method, for detecting emotions, the resulted set of motion vectors is compared with a standard facial movement template caused by human emotional changes. In this paper, a new method is introduced to compute the quantity of likeness towards a particular emotion to make decisions based on the importance of obtained vectors from an optical flow approach. The current study uses a feature point tracking technique separately applied to the five facial image regions (eyebrows, eyes, and mouth) to identify basic emotions. Primarily, this research will be focusing on eye movement regions. For finding the vectors, one of the efficient optical flow methods is using the pre-experiment as explained further below.
基于光流的眼动图像情感检测算法分析
一种流行的识别人类情绪的方法,如快乐、悲伤和震惊,是基于面部特征的运动。显示这些运动的运动向量可以通过使用光流算法来计算。在该方法中,将得到的运动向量集与人类情绪变化引起的标准面部运动模板进行比较,以检测情绪。本文提出了一种计算特定情感相似度的新方法,并基于光流法获得的向量的重要性进行决策。目前的研究使用了一种特征点跟踪技术,分别应用于面部图像的五个区域(眉毛、眼睛和嘴巴)来识别基本情绪。首先,这项研究将集中在眼球运动区域。为了找到矢量,有效的光流方法之一是使用预实验,如下所述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
中国图象图形学报
中国图象图形学报 Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.20
自引率
0.00%
发文量
6776
期刊介绍: Journal of Image and Graphics (ISSN 1006-8961, CN 11-3758/TB, CODEN ZTTXFZ) is an authoritative academic journal supervised by the Chinese Academy of Sciences and co-sponsored by the Institute of Space and Astronautical Information Innovation of the Chinese Academy of Sciences (ISIAS), the Chinese Society of Image and Graphics (CSIG), and the Beijing Institute of Applied Physics and Computational Mathematics (BIAPM). The journal integrates high-tech theories, technical methods and industrialisation of applied research results in computer image graphics, and mainly publishes innovative and high-level scientific research papers on basic and applied research in image graphics science and its closely related fields. The form of papers includes reviews, technical reports, project progress, academic news, new technology reviews, new product introduction and industrialisation research. The content covers a wide range of fields such as image analysis and recognition, image understanding and computer vision, computer graphics, virtual reality and augmented reality, system simulation, animation, etc., and theme columns are opened according to the research hotspots and cutting-edge topics. Journal of Image and Graphics reaches a wide range of readers, including scientific and technical personnel, enterprise supervisors, and postgraduates and college students of colleges and universities engaged in the fields of national defence, military, aviation, aerospace, communications, electronics, automotive, agriculture, meteorology, environmental protection, remote sensing, mapping, oil field, construction, transportation, finance, telecommunications, education, medical care, film and television, and art. Journal of Image and Graphics is included in many important domestic and international scientific literature database systems, including EBSCO database in the United States, JST database in Japan, Scopus database in the Netherlands, China Science and Technology Thesis Statistics and Analysis (Annual Research Report), China Science Citation Database (CSCD), China Academic Journal Network Publishing Database (CAJD), and China Academic Journal Network Publishing Database (CAJD). China Science Citation Database (CSCD), China Academic Journals Network Publishing Database (CAJD), China Academic Journal Abstracts, Chinese Science Abstracts (Series A), China Electronic Science Abstracts, Chinese Core Journals Abstracts, Chinese Academic Journals on CD-ROM, and China Academic Journals Comprehensive Evaluation Database.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信