Secure ‘Text in Image’ Steganography Scheme Based on Alexnet and Contour-Let Transform

Lingamallu Naga Srinivasu, Vijayaraghavan Veeramani
{"title":"Secure ‘Text in Image’ Steganography Scheme Based on Alexnet and Contour-Let Transform","authors":"Lingamallu Naga Srinivasu, Vijayaraghavan Veeramani","doi":"10.1109/AISP53593.2022.9760538","DOIUrl":null,"url":null,"abstract":"Nowadays, ‘text in image’ steganography is utilised in a variety of applications like military, surveillance, and remote sensing etc., in order to keep the secret information secure. This paper is presenting the unique steganography algorithm for improving data security, visual quality, quality metrics and withstand the attacks of the stego image. In proposed algorithm, the security of the confidential information is improved by utilizing the SLICE encryption algorithm. It is used to generate the cipher data from the confidential data. The alexnet is introduced in this paper to detect the facial area in human cover image. A total of 1987 images are used to train the network and got maximum accuracy. Contour-let transform is utilized to decomposition of alexnet output. The “random pixel embedding” (RPE) technique is utilized to embed the confidential data in facial area of the sub-band. The combination of alexnet and contourlet transform is used to generate good visual quality of the stego image. The proposed algorithm produces a stego image that has better visual quality, security, metric-values and withstand attacks compared to recent methods.","PeriodicalId":6793,"journal":{"name":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","volume":"2 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP53593.2022.9760538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, ‘text in image’ steganography is utilised in a variety of applications like military, surveillance, and remote sensing etc., in order to keep the secret information secure. This paper is presenting the unique steganography algorithm for improving data security, visual quality, quality metrics and withstand the attacks of the stego image. In proposed algorithm, the security of the confidential information is improved by utilizing the SLICE encryption algorithm. It is used to generate the cipher data from the confidential data. The alexnet is introduced in this paper to detect the facial area in human cover image. A total of 1987 images are used to train the network and got maximum accuracy. Contour-let transform is utilized to decomposition of alexnet output. The “random pixel embedding” (RPE) technique is utilized to embed the confidential data in facial area of the sub-band. The combination of alexnet and contourlet transform is used to generate good visual quality of the stego image. The proposed algorithm produces a stego image that has better visual quality, security, metric-values and withstand attacks compared to recent methods.
基于Alexnet和contourlet变换的安全“图像中的文本”隐写方案
如今,“图像中的文本”隐写术被用于各种应用,如军事,监视和遥感等,以保持秘密信息的安全。本文提出了一种独特的隐写算法,以提高数据安全性、视觉质量、质量指标和抵御隐写图像的攻击。在该算法中,利用SLICE加密算法提高了机密信息的安全性。它用于从机密数据生成密码数据。本文介绍了一种基于人脸识别的人脸区域检测方法。总共使用了1987张图像来训练网络,并获得了最大的准确率。利用轮廓let变换对alexnet输出进行分解。利用“随机像素嵌入”(RPE)技术将机密数据嵌入到子带的面部区域。将alexnet变换与contourlet变换相结合,生成视觉质量较好的隐写图像。与现有算法相比,该算法生成的隐写图像具有更好的视觉质量、安全性、度量值和抗攻击能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信