Geodesic nets on non-compact Riemannian manifolds

IF 1.2 1区 数学 Q1 MATHEMATICS
Gregory R. Chambers, Yevgeny Liokumovich, A. Nabutovsky, R. Rotman
{"title":"Geodesic nets on non-compact Riemannian manifolds","authors":"Gregory R. Chambers, Yevgeny Liokumovich, A. Nabutovsky, R. Rotman","doi":"10.1515/crelle-2023-0028","DOIUrl":null,"url":null,"abstract":"Abstract A geodesic flower is a finite collection of geodesic loops based at the same point 𝑝 that satisfy the following balancing condition: the sum of all unit tangent vectors to all geodesic arcs meeting at 𝑝 is equal to the zero vector. In particular, a geodesic flower is a stationary geodesic net. We prove that, in every complete non-compact manifold with locally convex ends, there exists a non-trivial geodesic flower.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"55 1","pages":"287 - 303"},"PeriodicalIF":1.2000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0028","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract A geodesic flower is a finite collection of geodesic loops based at the same point 𝑝 that satisfy the following balancing condition: the sum of all unit tangent vectors to all geodesic arcs meeting at 𝑝 is equal to the zero vector. In particular, a geodesic flower is a stationary geodesic net. We prove that, in every complete non-compact manifold with locally convex ends, there exists a non-trivial geodesic flower.
非紧黎曼流形上的测地线网
测地线花是基于同一点𝑝的测地线环路的有限集合,满足以下平衡条件:在𝑝处相遇的所有测地线弧的所有单位切向量之和等于零向量。具体地说,测地线花是一个固定的测地线网。证明了在每一个具有局部凸端的完全非紧流形中,存在一个非平凡的测地线花。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信