Gregory R. Chambers, Yevgeny Liokumovich, A. Nabutovsky, R. Rotman
{"title":"Geodesic nets on non-compact Riemannian manifolds","authors":"Gregory R. Chambers, Yevgeny Liokumovich, A. Nabutovsky, R. Rotman","doi":"10.1515/crelle-2023-0028","DOIUrl":null,"url":null,"abstract":"Abstract A geodesic flower is a finite collection of geodesic loops based at the same point 𝑝 that satisfy the following balancing condition: the sum of all unit tangent vectors to all geodesic arcs meeting at 𝑝 is equal to the zero vector. In particular, a geodesic flower is a stationary geodesic net. We prove that, in every complete non-compact manifold with locally convex ends, there exists a non-trivial geodesic flower.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"55 1","pages":"287 - 303"},"PeriodicalIF":1.2000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0028","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract A geodesic flower is a finite collection of geodesic loops based at the same point 𝑝 that satisfy the following balancing condition: the sum of all unit tangent vectors to all geodesic arcs meeting at 𝑝 is equal to the zero vector. In particular, a geodesic flower is a stationary geodesic net. We prove that, in every complete non-compact manifold with locally convex ends, there exists a non-trivial geodesic flower.
期刊介绍:
The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.