Parameterized Convexity Testing

A. Lahiri, I. Newman, Nithin M. Varma
{"title":"Parameterized Convexity Testing","authors":"A. Lahiri, I. Newman, Nithin M. Varma","doi":"10.1137/1.9781611977066.12","DOIUrl":null,"url":null,"abstract":"In this work, we develop new insights into the fundamental problem of convexity testing of real-valued functions over the domain [n]. Specifically, we present a nonadaptive algorithm that, given inputs ε ∈ (0, 1), s ∈ N, and oracle access to a function, ε-tests convexity in O(log(s)/ε), where s is an upper bound on the number of distinct discrete derivatives of the function. We also show that this bound is tight. Since s ≤ n, our query complexity bound is at least as good as that of the optimal convexity tester (Ben Eliezer; ITCS 2019) with complexity O( log εn ε ); our bound is strictly better when s = o(n). The main contribution of our work is to appropriately parameterize the complexity of convexity testing to circumvent the worst-case lower bound (Belovs et al.; SODA 2020) of Ω( log(εn) ε ) expressed in terms of the input size and obtain a more efficient algorithm.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"1 1","pages":"174-181"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611977066.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we develop new insights into the fundamental problem of convexity testing of real-valued functions over the domain [n]. Specifically, we present a nonadaptive algorithm that, given inputs ε ∈ (0, 1), s ∈ N, and oracle access to a function, ε-tests convexity in O(log(s)/ε), where s is an upper bound on the number of distinct discrete derivatives of the function. We also show that this bound is tight. Since s ≤ n, our query complexity bound is at least as good as that of the optimal convexity tester (Ben Eliezer; ITCS 2019) with complexity O( log εn ε ); our bound is strictly better when s = o(n). The main contribution of our work is to appropriately parameterize the complexity of convexity testing to circumvent the worst-case lower bound (Belovs et al.; SODA 2020) of Ω( log(εn) ε ) expressed in terms of the input size and obtain a more efficient algorithm.
参数化凸性测试
在这项工作中,我们对域上实值函数的凸性测试的基本问题有了新的见解[n]。具体地说,我们提出了一种非自适应算法,给定输入ε∈(0,1),s∈N,以及对函数的oracle访问,ε-在O(log(s)/ε)范围内检验凸性,其中s是该函数不同离散导数个数的上界。我们还证明了这个界是紧的。由于s≤n,我们的查询复杂度界至少与最优凸性测试仪(Ben Eliezer;复杂度为O(log εn ε)的ITCS 2019;当s = 0 (n)时,我们的边界更严格。我们工作的主要贡献是适当地参数化凸性测试的复杂性,以绕过最坏情况下界(Belovs等人;SODA 2020)的Ω(log(εn) ε)表示为输入大小,并获得更高效的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信