REVISITING SOME FUZZY ALGEBRAIC STRUCTURES

R. Kellil
{"title":"REVISITING SOME FUZZY ALGEBRAIC STRUCTURES","authors":"R. Kellil","doi":"10.15625/1813-9663/38/3/17039","DOIUrl":null,"url":null,"abstract":"Following our investigations on some fuzzy algebraic structures started in [6--8], and [9], in the present work, we revisit fuzzy groups and fuzzy ideals and introduce some new examples and then define the notion of fuzzy relation modulo a fuzzy subgroup and modulo a fuzzy ideal. As a consequence, we introduce the right and left cosets modulo a fuzzy relation. This work and the previously cited ones can be considered as a continuation of investigations initiated in [1--5]. Toward our investigation, we have in mind that by introducing these new definitions, the results that we can get should represent generalization of classical and commonly known concepts of algebra.","PeriodicalId":15444,"journal":{"name":"Journal of Computer Science and Cybernetics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/1813-9663/38/3/17039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Following our investigations on some fuzzy algebraic structures started in [6--8], and [9], in the present work, we revisit fuzzy groups and fuzzy ideals and introduce some new examples and then define the notion of fuzzy relation modulo a fuzzy subgroup and modulo a fuzzy ideal. As a consequence, we introduce the right and left cosets modulo a fuzzy relation. This work and the previously cited ones can be considered as a continuation of investigations initiated in [1--5]. Toward our investigation, we have in mind that by introducing these new definitions, the results that we can get should represent generalization of classical and commonly known concepts of algebra.
重访一些模糊代数结构
继我们在[6—8]和[9]中开始对一些模糊代数结构的研究之后,在本工作中,我们重新审视了模糊群和模糊理想,并引入了一些新的例子,然后定义了模糊关系模模糊子群和模模糊理想的概念。因此,我们引入了对模糊关系的左、右余集模。这项工作和先前引用的研究可以被认为是[1- 5]中发起的研究的延续。对于我们的研究,我们的想法是,通过引入这些新的定义,我们可以得到的结果应该是经典的和众所周知的代数概念的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信