Prediction of Malware Propagation and Links within Communities in Social Media Based Events

Abinaya Sowriraghavan, P. Burnap
{"title":"Prediction of Malware Propagation and Links within Communities in Social Media Based Events","authors":"Abinaya Sowriraghavan, P. Burnap","doi":"10.1145/2786451.2786494","DOIUrl":null,"url":null,"abstract":"This paper is aimed at studying malware propagation on social media and community link prediction. Twitter is taken as the social media platform and data is collected using Twitter4j and MongoDB. A high interaction client honeypot is used to classify benign and malicious URL's. The retweet volume and links between the users are then analyzed. Further to this, the work aims to detect communities that arise from these links between users with the help of BIGClam algorithm.","PeriodicalId":93136,"journal":{"name":"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2786451.2786494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper is aimed at studying malware propagation on social media and community link prediction. Twitter is taken as the social media platform and data is collected using Twitter4j and MongoDB. A high interaction client honeypot is used to classify benign and malicious URL's. The retweet volume and links between the users are then analyzed. Further to this, the work aims to detect communities that arise from these links between users with the help of BIGClam algorithm.
基于社交媒体事件的社区内恶意软件传播和链接的预测
本文旨在研究恶意软件在社交媒体上的传播和社区链接预测。以Twitter为社交媒体平台,使用Twitter4j和MongoDB收集数据。采用高交互客户端蜜罐对良性和恶意URL进行分类。然后分析用户之间的转发量和链接。在此基础上,该工作旨在通过BIGClam算法检测用户之间这些链接产生的社区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信