A no-go result on common cause approaches via Hardy relations

Q1 Arts and Humanities
Katsuaki Higashi
{"title":"A no-go result on common cause approaches via Hardy relations","authors":"Katsuaki Higashi","doi":"10.1016/j.shpsb.2019.04.003","DOIUrl":null,"url":null,"abstract":"<div><p>According to a conventional view, there exists no common cause model of quantum correlations satisfying locality requirements. Indeed, Bell's inequality is derived from some locality requirements and the assumption that the common cause exists, and the violation of the inequality has been experimentally verified. On the other hand, some researchers argued that in the derivation of the inequality, the existence of a common common-cause for multiple correlations is implicitly assumed and that the assumption is unreasonably strong. According to their idea, what is necessary for explaining the quantum correlation is a common cause for each correlation. However, Graβhoff et al. showed that when there are three pairs of perfectly correlated events and a common cause of each correlation exist, we cannot construct a common cause model that is consistent with quantum mechanical prediction and also meets several locality requirements. In this paper, first, as a consequence of the fact shown by Graβhoff et al., we will confirm that there exists no local common cause model when a two-particle system is in any maximally entangled state. After that, based on Hardy's famous argument, we will prove that there exists no local common cause model when a two-particle system is in any non-maximally entangled state. Therefore, it will be concluded that for any entangled state, there exists no local common cause model. It will be revealed that the non-existence of a common cause model satisfying locality is not limited to a particular state like the singlet state.</p></div>","PeriodicalId":54442,"journal":{"name":"Studies in History and Philosophy of Modern Physics","volume":"67 ","pages":"Pages 12-19"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.shpsb.2019.04.003","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in History and Philosophy of Modern Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1355219818301114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 2

Abstract

According to a conventional view, there exists no common cause model of quantum correlations satisfying locality requirements. Indeed, Bell's inequality is derived from some locality requirements and the assumption that the common cause exists, and the violation of the inequality has been experimentally verified. On the other hand, some researchers argued that in the derivation of the inequality, the existence of a common common-cause for multiple correlations is implicitly assumed and that the assumption is unreasonably strong. According to their idea, what is necessary for explaining the quantum correlation is a common cause for each correlation. However, Graβhoff et al. showed that when there are three pairs of perfectly correlated events and a common cause of each correlation exist, we cannot construct a common cause model that is consistent with quantum mechanical prediction and also meets several locality requirements. In this paper, first, as a consequence of the fact shown by Graβhoff et al., we will confirm that there exists no local common cause model when a two-particle system is in any maximally entangled state. After that, based on Hardy's famous argument, we will prove that there exists no local common cause model when a two-particle system is in any non-maximally entangled state. Therefore, it will be concluded that for any entangled state, there exists no local common cause model. It will be revealed that the non-existence of a common cause model satisfying locality is not limited to a particular state like the singlet state.

通过哈代关系对共因方法的否定结果
传统观点认为,不存在满足局部性要求的量子相关共因模型。实际上,贝尔不等式是在一定的局部性要求和共同原因存在的假设下推导出来的,并且不等式的违背已经被实验证实。另一方面,一些研究人员认为,在不等式的推导过程中,隐含地假设存在多重相关性的共同原因,并且该假设是不合理的强。根据他们的想法,解释量子相关所必需的是每个相关的共同原因。然而,Graβhoff等研究表明,当存在三对完全相关的事件,且每对相关都有一个共同原因时,我们无法构建一个既符合量子力学预测又满足若干局部性要求的共同原因模型。在本文中,首先,根据Graβhoff等人所证明的事实,我们将证实当两粒子系统处于任何最大纠缠态时,不存在局部共因模型。之后,根据Hardy的著名论证,我们将证明当两粒子系统处于任何非最大纠缠态时,不存在局部共因模型。因此,可以得出结论,对于任何纠缠态,都不存在局部共因模型。揭示了满足局部性的共因模型的不存在性并不局限于像单重态这样的特定状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in History and Philosophy of Modern Physics
Studies in History and Philosophy of Modern Physics 物理-科学史与科学哲学
自引率
0.00%
发文量
0
审稿时长
13.3 weeks
期刊介绍: Studies in History and Philosophy of Modern Physics is devoted to all aspects of the history and philosophy of modern physics broadly understood, including physical aspects of astronomy, chemistry and other non-biological sciences. The primary focus is on physics from the mid/late-nineteenth century to the present, the period of emergence of the kind of theoretical physics that has come to dominate the exact sciences in the twentieth century. The journal is internationally oriented with contributions from a wide range of perspectives. In addition to purely historical or philosophical papers, the editors particularly encourage papers that combine these two disciplines. The editors are also keen to publish papers of interest to physicists, as well as specialists in history and philosophy of physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信