Kinetic field theory: Non-linear cosmic power spectra in the mean-field approximation

M. Bartelmann, Johannes Dombrowski, Sara Konrad, E. Kozlikin, R. Lilow, C. Littek, Christophe Pixius, F. Fabis
{"title":"Kinetic field theory: Non-linear cosmic power spectra in the mean-field approximation","authors":"M. Bartelmann, Johannes Dombrowski, Sara Konrad, E. Kozlikin, R. Lilow, C. Littek, Christophe Pixius, F. Fabis","doi":"10.21468/SciPostPhys.10.6.153","DOIUrl":null,"url":null,"abstract":"We use the recently developed Kinetic Field Theory (KFT) for cosmic structure formation to show how non-linear power spectra for cosmic density fluctuations can be calculated in a mean-field approximation to the particle interactions. Our main result is a simple, closed and analytic, approximate expression for this power spectrum. This expression has two parameters characterising non-linear structure growth which can be calibrated within KFT itself. Using this self-calibration, the non-linear power spectrum agrees with results obtained from numerical simulations to within typically $\\lesssim10\\,\\%$ up to wave numbers $k\\lesssim10\\,h\\,\\mathrm{Mpc}^{-1}$ at redshift $z = 0$. Adjusting the two parameters to optimise agreement with numerical simulations, the relative difference to numerical results shrinks to typically $\\lesssim 5\\,\\%$. As part of the derivation of our mean-field approximation, we show that the effective interaction potential between dark-matter particles relative to Zel'dovich trajectories is sourced by non-linear cosmic density fluctuations only, and is approximately of Yukawa rather than Newtonian shape.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21468/SciPostPhys.10.6.153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We use the recently developed Kinetic Field Theory (KFT) for cosmic structure formation to show how non-linear power spectra for cosmic density fluctuations can be calculated in a mean-field approximation to the particle interactions. Our main result is a simple, closed and analytic, approximate expression for this power spectrum. This expression has two parameters characterising non-linear structure growth which can be calibrated within KFT itself. Using this self-calibration, the non-linear power spectrum agrees with results obtained from numerical simulations to within typically $\lesssim10\,\%$ up to wave numbers $k\lesssim10\,h\,\mathrm{Mpc}^{-1}$ at redshift $z = 0$. Adjusting the two parameters to optimise agreement with numerical simulations, the relative difference to numerical results shrinks to typically $\lesssim 5\,\%$. As part of the derivation of our mean-field approximation, we show that the effective interaction potential between dark-matter particles relative to Zel'dovich trajectories is sourced by non-linear cosmic density fluctuations only, and is approximately of Yukawa rather than Newtonian shape.
动力学场论:平均场近似下的非线性宇宙功率谱
我们使用最近发展的宇宙结构形成的动力学场论(KFT)来展示如何在粒子相互作用的平均场近似中计算宇宙密度波动的非线性功率谱。我们的主要结果是这个功率谱的一个简单的、封闭的、解析的近似表达式。该表达式具有表征非线性结构生长的两个参数,可以在KFT本身内校准。使用这种自校准,非线性功率谱与数值模拟结果一致,通常在$\lesssim10\,\%$范围内,直到波数$k\lesssim10\,h\,\ mathm {Mpc}^{-1}$在红移$z = 0$处。调整这两个参数以优化与数值模拟的一致性,与数值结果的相对差异通常缩小到$\ \,$\ %$。作为平均场近似推导的一部分,我们表明暗物质粒子之间相对于泽尔多维奇轨迹的有效相互作用势仅来源于非线性宇宙密度波动,并且近似为汤川形状而不是牛顿形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信