Automated generation of test oracles for RESTful APIs

J. Alonso
{"title":"Automated generation of test oracles for RESTful APIs","authors":"J. Alonso","doi":"10.1145/3540250.3559080","DOIUrl":null,"url":null,"abstract":"Test case generation tools for RESTful APIs have proliferated in recent years. However, despite their promising results, they all share the same limitation: they can only detect crashes (i.e., server errors) and disconformities with the API specification. In this paper, we present a technique for the automated generation of test oracles for RESTful APIs through the detection of invariants. In practice, our approach aims to learn the expected properties of the output by analysing previous API requests and their corresponding responses. For this, we extended the popular tool Daikon for dynamic detection of likely invariants. A preliminary evaluation conducted on a set of 8 operations from 6 industrial APIs reveals a total precision of 66.5% (reaching 100% in 2 operations). Moreover, our approach revealed 6 reproducible bugs in APIs with millions of users: Amadeus, GitHub and OMDb.","PeriodicalId":68155,"journal":{"name":"软件产业与工程","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"软件产业与工程","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1145/3540250.3559080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Test case generation tools for RESTful APIs have proliferated in recent years. However, despite their promising results, they all share the same limitation: they can only detect crashes (i.e., server errors) and disconformities with the API specification. In this paper, we present a technique for the automated generation of test oracles for RESTful APIs through the detection of invariants. In practice, our approach aims to learn the expected properties of the output by analysing previous API requests and their corresponding responses. For this, we extended the popular tool Daikon for dynamic detection of likely invariants. A preliminary evaluation conducted on a set of 8 operations from 6 industrial APIs reveals a total precision of 66.5% (reaching 100% in 2 operations). Moreover, our approach revealed 6 reproducible bugs in APIs with millions of users: Amadeus, GitHub and OMDb.
为RESTful api自动生成测试oracle
用于RESTful api的测试用例生成工具近年来激增。然而,尽管它们的结果很有希望,但它们都有相同的限制:它们只能检测崩溃(即服务器错误)和与API规范的不一致。在本文中,我们提出了一种通过检测不变量来自动生成RESTful api测试oracle的技术。在实践中,我们的方法旨在通过分析以前的API请求及其相应的响应来学习输出的预期属性。为此,我们扩展了流行的工具Daikon,用于动态检测可能的不变量。对6个工业api的8个操作进行了初步评估,总精度为66.5%(2个操作达到100%)。此外,我们的方法揭示了有数百万用户的api中的6个可重复的错误:Amadeus, GitHub和OMDb。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
676
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信