Antifungal potential of purified 3-(4-isopropylstyryl)-5-methylcyclohex-2-enone from marine actinobacteria Streptomyces albus A18

M. M. Kader, M. Sambantham, J. Vinoth
{"title":"Antifungal potential of purified 3-(4-isopropylstyryl)-5-methylcyclohex-2-enone from marine actinobacteria Streptomyces albus A18","authors":"M. M. Kader, M. Sambantham, J. Vinoth","doi":"10.21472/bjbs(2020)071603","DOIUrl":null,"url":null,"abstract":"\n Actinomycetes are known to produce potential secondary metabolites which comprise biological activity. The present work endeavor is to assess the fungicidal property of novel marine actinobacterial compound 3-(4-isopropylstyryl)-5-methylcyclohex-2-enone extracted and isolated from Streptomyces albus AC18. The crude compound was loaded on silica gel column and eluted with chloroform - methanol - water. The purity of isolated compound were analyzed by TLC using chloroform and methanol as the solvent system and verified by GC-MS. The purified compound structure was established from infrared, ultraviolet, 1H-NMR, 13C-NMR and mass spectral data. The chemical shift assignments for the aliphatic compound from 1H-NMR corresponds to molecular formula as C18H22O. The Bioassay-guided fraction leads to the isolation of compound, was identified as 3-(4-isopropylstyryl)-5-methylcyclohex-2-enone. Hence, this marine isolated S. albus AC18 actino-bacterial compound seem to be more efficient in its antifungal activity and acts as prominent reservoir for novel drug molecules en route for answering several fungal diseases.\n","PeriodicalId":9319,"journal":{"name":"Brazilian Journal of Biological Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Biological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21472/bjbs(2020)071603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Actinomycetes are known to produce potential secondary metabolites which comprise biological activity. The present work endeavor is to assess the fungicidal property of novel marine actinobacterial compound 3-(4-isopropylstyryl)-5-methylcyclohex-2-enone extracted and isolated from Streptomyces albus AC18. The crude compound was loaded on silica gel column and eluted with chloroform - methanol - water. The purity of isolated compound were analyzed by TLC using chloroform and methanol as the solvent system and verified by GC-MS. The purified compound structure was established from infrared, ultraviolet, 1H-NMR, 13C-NMR and mass spectral data. The chemical shift assignments for the aliphatic compound from 1H-NMR corresponds to molecular formula as C18H22O. The Bioassay-guided fraction leads to the isolation of compound, was identified as 3-(4-isopropylstyryl)-5-methylcyclohex-2-enone. Hence, this marine isolated S. albus AC18 actino-bacterial compound seem to be more efficient in its antifungal activity and acts as prominent reservoir for novel drug molecules en route for answering several fungal diseases.
从海洋放线菌白色链霉菌A18中纯化的3-(4-异丙基苯乙烯基)-5-甲基环己烯酮的抗真菌潜力
已知放线菌产生潜在的次生代谢物,其中包括生物活性。本文研究了从白色链霉菌AC18中分离得到的新型海洋放线菌化合物3-(4-异丙基苯乙烯基)-5-甲基环己烯酮的杀菌性能。将粗化合物装在硅胶柱上,用氯仿-甲醇-水洗脱。以氯仿和甲醇为溶剂体系,采用薄层色谱法分析分离化合物的纯度,并采用气相色谱-质谱法进行验证。通过红外、紫外、1H-NMR、13C-NMR和质谱数据确定了纯化后化合物的结构。该脂肪族化合物的1H-NMR化学式为C18H22O。该化合物经生物测定分离得到,鉴定为3-(4-异丙基苯乙烯基)-5-甲基环己烯酮。因此,这种海洋分离的白弧菌AC18放线酶-细菌化合物似乎具有更有效的抗真菌活性,并作为治疗几种真菌疾病的新型药物分子的重要储存库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信