The theory of N–mixed-spin-P fields

IF 2 1区 数学
Huai-liang Chang, Shuai Guo, Jun Li, Wei-Ping Li
{"title":"The theory of N–mixed-spin-P fields","authors":"Huai-liang Chang, Shuai Guo, Jun Li, Wei-Ping Li","doi":"10.2140/gt.2021.25.775","DOIUrl":null,"url":null,"abstract":"This is the first part of the project toward proving the BCOV's Feymann graph sum formula of all genera Gromov-Witten invariants of quintic Calabi-Yau threefolds. In this paper, we introduce the notion of N-Mixed-Spin-P fields, construct their moduli spaces, their virtual cycles, their virtual localization formulas, and a vanishing result associated with irregular graphs.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2021.25.775","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This is the first part of the project toward proving the BCOV's Feymann graph sum formula of all genera Gromov-Witten invariants of quintic Calabi-Yau threefolds. In this paper, we introduce the notion of N-Mixed-Spin-P fields, construct their moduli spaces, their virtual cycles, their virtual localization formulas, and a vanishing result associated with irregular graphs.
n-混合自旋- p场理论
这是证明五次Calabi-Yau三倍的所有属Gromov-Witten不变量的BCOV的Feymann图和公式的项目的第一部分。本文引入了n-混合自旋- p场的概念,构造了n-混合自旋- p场的模空间、虚环、虚定位公式,并给出了一个与不规则图相关的消失结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信