A biometric-based system for unsupervised anomaly behaviour detection at the pawn shop

Q2 Engineering
G. Abbattista, M. Chimienti, V. Dentamaro, P. Giglio, D. Impedovo, G. Pirlo, Giacomo Rosato
{"title":"A biometric-based system for unsupervised anomaly behaviour detection at the pawn shop","authors":"G. Abbattista, M. Chimienti, V. Dentamaro, P. Giglio, D. Impedovo, G. Pirlo, Giacomo Rosato","doi":"10.1080/23335777.2022.2104379","DOIUrl":null,"url":null,"abstract":"ABSTRACT This article shows a system performing re-identification and description of people entering different stores of the same franchise by means of Face Recognition, Gait Analysis, and Soft Biometrics techniques. Additionally, an anomaly detection analysis is conducted to identify suspicious behavioral patterns.It has been tested on an ad-hoc dataset of a set of pawn shops of a local franchise.The registered users paths have been human labelled as ‘normal’ or ‘abnormal’ achieving a precision of 100%, recall of 72.72%, and an average accuracy of 96.39%.The system is able to report anomalies to support decisions in a context of a security monitoring system..","PeriodicalId":37058,"journal":{"name":"Cyber-Physical Systems","volume":"20 1","pages":"338 - 356"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23335777.2022.2104379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT This article shows a system performing re-identification and description of people entering different stores of the same franchise by means of Face Recognition, Gait Analysis, and Soft Biometrics techniques. Additionally, an anomaly detection analysis is conducted to identify suspicious behavioral patterns.It has been tested on an ad-hoc dataset of a set of pawn shops of a local franchise.The registered users paths have been human labelled as ‘normal’ or ‘abnormal’ achieving a precision of 100%, recall of 72.72%, and an average accuracy of 96.39%.The system is able to report anomalies to support decisions in a context of a security monitoring system..
一个基于生物特征的系统,用于典当行无监督异常行为检测
本文介绍了一种利用人脸识别、步态分析和软生物识别技术对进入同一特许经营的不同门店的人员进行再识别和描述的系统。此外,进行异常检测分析以识别可疑的行为模式。它已经在一组本地特许经营的典当行的临时数据集上进行了测试。注册用户路径被人为标记为“正常”或“异常”,达到100%的准确率,召回率为72.72%,平均准确率为96.39%。该系统能够报告异常情况,以便在安全监控系统的上下文中支持决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cyber-Physical Systems
Cyber-Physical Systems Engineering-Computational Mechanics
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信