U-Net Mimarisi ile Beyin Tümörü MRI Görüntülerinin Segmentasyonu

S. Uzun, Emin Güney, Bünyamin Bi̇ngöl
{"title":"U-Net Mimarisi ile Beyin Tümörü MRI Görüntülerinin Segmentasyonu","authors":"S. Uzun, Emin Güney, Bünyamin Bi̇ngöl","doi":"10.31202/ecjse.1169424","DOIUrl":null,"url":null,"abstract":"Son yıllarda derin öğrenme yöntemlerinin gelişmesiyle birlikte, sağlık alanında görüntü işleme konusu oldukça önem kazanmıştır. Bu alanda yapılan en yaygın çalışmalardan birisi de kanserli beyin tümörlerinin hızlı ve doğru teşhis edilmesine yöneliktir. Beyin tümörleri başta çocuklar ve yaşlılar olmak üzere kanser hastalarının önde gelen ölüm nedenlerinden biridir. Özellikle son on yılda GPU hesaplama teknolojilerinin gelişmesi ve buna bağlı olarak derin öğrenme alanında yapılan çalışmaların artması da bu alana katkı sağlamıştır. Bu çalışmada MRI görüntüleri üzerinde 512x512 filtre boyutlarına sahip U-Net mimarisi kullanılarak beyin tümör hücrelerinin tespit edilmesini sağlayan bir sistem gerçekleştirilmiştir. Çalışmada literatürde sıkça kullanılan global verisetlerinden BRATS veriseti kullanılmıştır. Yapılan çalışma sonucunda güvenilirliği kabul edilebilen %91,38’lik bir dice skoru elde edilmiştir.","PeriodicalId":11622,"journal":{"name":"El-Cezeri Fen ve Mühendislik Dergisi","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"El-Cezeri Fen ve Mühendislik Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31202/ecjse.1169424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Son yıllarda derin öğrenme yöntemlerinin gelişmesiyle birlikte, sağlık alanında görüntü işleme konusu oldukça önem kazanmıştır. Bu alanda yapılan en yaygın çalışmalardan birisi de kanserli beyin tümörlerinin hızlı ve doğru teşhis edilmesine yöneliktir. Beyin tümörleri başta çocuklar ve yaşlılar olmak üzere kanser hastalarının önde gelen ölüm nedenlerinden biridir. Özellikle son on yılda GPU hesaplama teknolojilerinin gelişmesi ve buna bağlı olarak derin öğrenme alanında yapılan çalışmaların artması da bu alana katkı sağlamıştır. Bu çalışmada MRI görüntüleri üzerinde 512x512 filtre boyutlarına sahip U-Net mimarisi kullanılarak beyin tümör hücrelerinin tespit edilmesini sağlayan bir sistem gerçekleştirilmiştir. Çalışmada literatürde sıkça kullanılan global verisetlerinden BRATS veriseti kullanılmıştır. Yapılan çalışma sonucunda güvenilirliği kabul edilebilen %91,38’lik bir dice skoru elde edilmiştir.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信