{"title":"Water Desorption Process in Room Temperature Ionic Liquid-HO Mixtures: N, N-diethyl-N-methyl-N-(2-methoxyethyl) Ammonium Tetrafluoroborate","authors":"H. Abe, Tomohiro Mori, Y. Imai, Y. Yoshimura","doi":"10.1155/2012/351968","DOIUrl":null,"url":null,"abstract":"A water desorption process of a mixture of room temperature ionic liquid (N, N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate) and water was investigated via simultaneous X-ray diffraction and differential scanning calorimetry (DSC) measurements, in which relative humidity was controlled by a water vapor generator. In these measurements, H2O concentration was estimated by the peak position of the principal peak in X-ray diffraction patterns, and the thermal property associated with a mixing state was detected by a DSC thermograph. In addition, the density of the mixture was measured as a macroscopic property. In situ observations revealed that the thermally unstable mixing state in the water-rich region has an important correlation with density and thermal and structural properties.","PeriodicalId":17290,"journal":{"name":"Journal of Thermodynamics","volume":"110 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/351968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
A water desorption process of a mixture of room temperature ionic liquid (N, N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate) and water was investigated via simultaneous X-ray diffraction and differential scanning calorimetry (DSC) measurements, in which relative humidity was controlled by a water vapor generator. In these measurements, H2O concentration was estimated by the peak position of the principal peak in X-ray diffraction patterns, and the thermal property associated with a mixing state was detected by a DSC thermograph. In addition, the density of the mixture was measured as a macroscopic property. In situ observations revealed that the thermally unstable mixing state in the water-rich region has an important correlation with density and thermal and structural properties.