P. Karam, Junjie Yang, K. Cozyris, Tim Stephenson, Xiaoxuan An, Chimok Jung, Jongyoung Jun, Hyun-Gun Lee
{"title":"Well Spacing and Landing Zone Optimization to Improve Development Strategy - A Case Study from the Stack","authors":"P. Karam, Junjie Yang, K. Cozyris, Tim Stephenson, Xiaoxuan An, Chimok Jung, Jongyoung Jun, Hyun-Gun Lee","doi":"10.2118/195241-MS","DOIUrl":null,"url":null,"abstract":"\n Sooner Trend Anadarko Canadian Kingfisher, also known as STACK, is a booming unconventional oil play in North America. As one of the main features that makes the asset profitable, multiple targeting benches raise a challenge of optimization. Well-developed natural fracture system brings in another level of complexity to estimate well spacing. This study introduces an integrated workflow to better understand the fluid flow mechanism in the reservoir and optimize development strategy.\n From borehole image log, natural fracture orientation and density was interpreted and statistically populated into geologic model along with petrophysical properties. To account for productivity enhancement due to natural fractures, enhanced permeability was embedded into the simulation model according to the distribution of discrete fracture network. After being history matched, the reservoir model was used to test the sensitivity on well spacing, landing zone and hydraulic fracturing pump schedule. Both infill drilling program and green field development scenarios were tested and compared to optimize our field development study.\n Production history match indicates that natural fractures serve as fluid flow conduit and contribute significantly to the production in Osage. Pressure transient observation shows a similar reservoir behavior in the Osage as opposed to the Woodford. Multiple wells experience productivity reduction over longer production history, indicating near-field damage (such as scaling) and/or far-field damage (such as fracture closure). Introduction of skin factor and pressure dependent permeability captured the trend on productivity behavior in the history match. In addition, the simulation study shed light on the hydraulic fracture geometry that provides direct insight on well spacing and landing zone analyses. Results from the infill drilling program show that staggered design with 3 Osage and 4 Woodford wells per section yields the higher oil recovery. However, using the greenfield sensitivities, and depending on the pumping schedule, hydraulic fractures from Woodford wells show upward growth, draining both formations effectively even without Osage wells.\n This study provides valuable information about the development strategy in STACK unconventional resources, particularly for scenarios with natural fracture system and multiple targeting zones. The simulation workflow considers well interference in both horizontal and vertical directions simultaneously to optimize oil recovery and reduce operational cost.","PeriodicalId":11150,"journal":{"name":"Day 2 Wed, April 10, 2019","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, April 10, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/195241-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Sooner Trend Anadarko Canadian Kingfisher, also known as STACK, is a booming unconventional oil play in North America. As one of the main features that makes the asset profitable, multiple targeting benches raise a challenge of optimization. Well-developed natural fracture system brings in another level of complexity to estimate well spacing. This study introduces an integrated workflow to better understand the fluid flow mechanism in the reservoir and optimize development strategy.
From borehole image log, natural fracture orientation and density was interpreted and statistically populated into geologic model along with petrophysical properties. To account for productivity enhancement due to natural fractures, enhanced permeability was embedded into the simulation model according to the distribution of discrete fracture network. After being history matched, the reservoir model was used to test the sensitivity on well spacing, landing zone and hydraulic fracturing pump schedule. Both infill drilling program and green field development scenarios were tested and compared to optimize our field development study.
Production history match indicates that natural fractures serve as fluid flow conduit and contribute significantly to the production in Osage. Pressure transient observation shows a similar reservoir behavior in the Osage as opposed to the Woodford. Multiple wells experience productivity reduction over longer production history, indicating near-field damage (such as scaling) and/or far-field damage (such as fracture closure). Introduction of skin factor and pressure dependent permeability captured the trend on productivity behavior in the history match. In addition, the simulation study shed light on the hydraulic fracture geometry that provides direct insight on well spacing and landing zone analyses. Results from the infill drilling program show that staggered design with 3 Osage and 4 Woodford wells per section yields the higher oil recovery. However, using the greenfield sensitivities, and depending on the pumping schedule, hydraulic fractures from Woodford wells show upward growth, draining both formations effectively even without Osage wells.
This study provides valuable information about the development strategy in STACK unconventional resources, particularly for scenarios with natural fracture system and multiple targeting zones. The simulation workflow considers well interference in both horizontal and vertical directions simultaneously to optimize oil recovery and reduce operational cost.