Application of Machine Learning to Oil Production Forecast under Uncertainties-The Linear Model

L. Kubota, F. Souto
{"title":"Application of Machine Learning to Oil Production Forecast under Uncertainties-The Linear Model","authors":"L. Kubota, F. Souto","doi":"10.4043/29883-ms","DOIUrl":null,"url":null,"abstract":"\n In this paper, we propose an alternative approach to the problem of oil-production forecast based on the most straightforward feature-based machine-learning algorithm: the linear model. The method can be successfully applied to forecast both oil-rate and liquid-rate in oil fields under (i) water injection, (ii) gas injection, and (iii) simultaneous water and steam injection. Our data-driven algorithm learns the underlying reservoir dynamics from 3 sets of time-series, namely, (i) injection-rate, (ii) liquid and oil-rate, and (iii) number of producers. That is all the data we need to make reliable forecasts, no geological model or numerical reservoir simulators were used.","PeriodicalId":10927,"journal":{"name":"Day 3 Thu, October 31, 2019","volume":"124 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, October 31, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/29883-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose an alternative approach to the problem of oil-production forecast based on the most straightforward feature-based machine-learning algorithm: the linear model. The method can be successfully applied to forecast both oil-rate and liquid-rate in oil fields under (i) water injection, (ii) gas injection, and (iii) simultaneous water and steam injection. Our data-driven algorithm learns the underlying reservoir dynamics from 3 sets of time-series, namely, (i) injection-rate, (ii) liquid and oil-rate, and (iii) number of producers. That is all the data we need to make reliable forecasts, no geological model or numerical reservoir simulators were used.
机器学习在不确定条件下石油产量预测中的应用——线性模型
在本文中,我们提出了一种替代方法来解决石油产量预测问题,该方法基于最直接的基于特征的机器学习算法:线性模型。该方法可以成功地应用于(1)注水、(2)注气、(3)同时注水和注汽三种情况下的油田产油率和液率预测。我们的数据驱动算法从3组时间序列中学习底层储层动态,即(i)注入速率,(ii)液油速率,以及(iii)生产商数量。这就是我们进行可靠预测所需的全部数据,没有使用地质模型或数值油藏模拟器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信