{"title":"Effect of Nanostructure CdSe/CdS Dot-in-Rods Coated on Flexible Cellulosic Substrate to Improve Photoluminescence Potential of Conducting Fiber","authors":"S. Patra, B. Mallick","doi":"10.1166/sl.2020.4209","DOIUrl":null,"url":null,"abstract":"The work presented here, the flash synthesis of high photoluminescence of CdSe/CdS Dot-in-Rods was carried out by \"high-temperature short-time\" (HTST) processing technique of quantum yield being 77%. Upon characterization by transmission electron microscope (TEM), it is found to be\n the dimensions of CdSe-CdS QDs to be rods (rod length rod diameter) of 27.8 × 3.4 nm. A layer of high luminescence CdSe/CdS Dot-in-Rods was grown on the surface of the touch sensitive natural Mimosa pudica (MP) natural conducting fiber by chemical dipping method. The composite CdSe/CdS\n are made up of a CdSe spherical core (Dot) of average diameter about 2.9 nm embedded in a Rod of CdS shell. The well-oriented CdSe/CdS Dot-in-Rods nano-particle was observed to have an emission peak at 545 nm. The works suggest a sensing plate which enhances Photoluminescence potential of\n conducting natural fiber.","PeriodicalId":21781,"journal":{"name":"Sensor Letters","volume":"14 1","pages":"216-221"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/sl.2020.4209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The work presented here, the flash synthesis of high photoluminescence of CdSe/CdS Dot-in-Rods was carried out by "high-temperature short-time" (HTST) processing technique of quantum yield being 77%. Upon characterization by transmission electron microscope (TEM), it is found to be
the dimensions of CdSe-CdS QDs to be rods (rod length rod diameter) of 27.8 × 3.4 nm. A layer of high luminescence CdSe/CdS Dot-in-Rods was grown on the surface of the touch sensitive natural Mimosa pudica (MP) natural conducting fiber by chemical dipping method. The composite CdSe/CdS
are made up of a CdSe spherical core (Dot) of average diameter about 2.9 nm embedded in a Rod of CdS shell. The well-oriented CdSe/CdS Dot-in-Rods nano-particle was observed to have an emission peak at 545 nm. The works suggest a sensing plate which enhances Photoluminescence potential of
conducting natural fiber.
期刊介绍:
The growing interest and activity in the field of sensor technologies requires a forum for rapid dissemination of important results: Sensor Letters is that forum. Sensor Letters offers scientists, engineers and medical experts timely, peer-reviewed research on sensor science and technology of the highest quality. Sensor Letters publish original rapid communications, full papers and timely state-of-the-art reviews encompassing the fundamental and applied research on sensor science and technology in all fields of science, engineering, and medicine. Highest priority will be given to short communications reporting important new scientific and technological findings.