Andisol and microcrystalline cellulose from Typha angustifolia for auramine O adsorption

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pranoto Pranoto, V. Suryanti, R. Adawiyah
{"title":"Andisol and microcrystalline cellulose from Typha angustifolia for auramine O adsorption","authors":"Pranoto Pranoto, V. Suryanti, R. Adawiyah","doi":"10.11591/ijaas.v12.i1.pp27-36","DOIUrl":null,"url":null,"abstract":"Andisol has a large surface area, is mesoporous, and contains the active groups' silanol (Si-OH) and aluminol (Al-OH). Besides andisol, cellulose is a good adsorbent, because microcrystalline cellulose has an active hydroxyl group (OH). The number of active adsorbent groups can be enhanced by chemically modifying the surface area (increment), or adding other materials. These modifications included alkaline modified-andisol with the addition of NaOH to increase pore size, cellulose hydrolysis with HCl to increase surface area, and andisol modification with the inclusion of other materials, mainly cellulose, to increase surface area. After the adsorption process is complete, the adsorption capacity of andisol-microcrystalline cellulose (AMS) to auramine O (AO) is known. As an adsorbent for AO, the surface area of BET andisol is 25.92 m2/g and the pore diameter is 14.40 nm, while the surface area of microcrystalline cellulose and AMS adsorbent are 26.60 m2/g and 18.60 m2/g, respectively. The maximum AO adsorption conditions by AMS were at pH 7, optimum at a contact time of 5 minutes, and maximum at a concentration of 40 mg/L with an adsorbent ratio of 1:1. The adsorption kinetics and isotherm more closely followed the pseudo second-order and Langmuir isotherm with an adsorption capacity of 5.24 mg/g.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijaas.v12.i1.pp27-36","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Andisol has a large surface area, is mesoporous, and contains the active groups' silanol (Si-OH) and aluminol (Al-OH). Besides andisol, cellulose is a good adsorbent, because microcrystalline cellulose has an active hydroxyl group (OH). The number of active adsorbent groups can be enhanced by chemically modifying the surface area (increment), or adding other materials. These modifications included alkaline modified-andisol with the addition of NaOH to increase pore size, cellulose hydrolysis with HCl to increase surface area, and andisol modification with the inclusion of other materials, mainly cellulose, to increase surface area. After the adsorption process is complete, the adsorption capacity of andisol-microcrystalline cellulose (AMS) to auramine O (AO) is known. As an adsorbent for AO, the surface area of BET andisol is 25.92 m2/g and the pore diameter is 14.40 nm, while the surface area of microcrystalline cellulose and AMS adsorbent are 26.60 m2/g and 18.60 m2/g, respectively. The maximum AO adsorption conditions by AMS were at pH 7, optimum at a contact time of 5 minutes, and maximum at a concentration of 40 mg/L with an adsorbent ratio of 1:1. The adsorption kinetics and isotherm more closely followed the pseudo second-order and Langmuir isotherm with an adsorption capacity of 5.24 mg/g.
香蒲中苯二醇和微晶纤维素对金胺O的吸附
苯二醇具有较大的表面积,介孔结构,含有硅烷醇(Si-OH)和铝醇(Al-OH)活性基团。除了和二醇,纤维素也是一种很好的吸附剂,因为微晶纤维素有一个活性羟基(OH)。活性吸附剂基团的数量可以通过化学修饰表面积(增量)或添加其他材料来增加。这些改性包括添加NaOH的碱性改性和二醇以增加孔径,用HCl水解纤维素以增加表面积,以及加入其他材料(主要是纤维素)的改性和二醇以增加表面积。吸附过程完成后,已知和二醇微晶纤维素(AMS)对金胺O (AO)的吸附能力。作为AO吸附剂,BET和二醇的表面积为25.92 m2/g,孔径为14.40 nm,而微晶纤维素和AMS吸附剂的表面积分别为26.60 m2/g和18.60 m2/g。AMS对AO的最大吸附条件为pH为7,接触时间为5 min时吸附效果最佳,吸附剂比为1:1时吸附浓度为40 mg/L时吸附效果最佳。吸附动力学和等温线更符合拟二阶和Langmuir等温线,吸附量为5.24 mg/g。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信