Formalization in Constructive Type Theory of the Standardization Theorem for the Lambda Calculus using Multiple Substitution

CoRR Pub Date : 2018-07-03 DOI:10.4204/EPTCS.274.3
Martín Copes, Nora Szasz, Álvaro Tasistro
{"title":"Formalization in Constructive Type Theory of the Standardization Theorem for the Lambda Calculus using Multiple Substitution","authors":"Martín Copes, Nora Szasz, Álvaro Tasistro","doi":"10.4204/EPTCS.274.3","DOIUrl":null,"url":null,"abstract":"We present a full formalization in Martin-L\\\"of's Constructive Type Theory of the Standardization Theorem for the Lambda Calculus using first-order syntax with one sort of names for both free and bound variables and Stoughton's multiple substitution. Our formalization is based on a proof by Ryo Kashima, in which a notion of beta-reducibility with a standard sequence is captured by an inductive relation. The proof uses only structural induction over the syntax and the relations defined, which is possible due to the specific formulation of substitution that we employ. The whole development has been machine-checked using the system Agda.","PeriodicalId":10720,"journal":{"name":"CoRR","volume":"14 1","pages":"27-41"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CoRR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.274.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a full formalization in Martin-L\"of's Constructive Type Theory of the Standardization Theorem for the Lambda Calculus using first-order syntax with one sort of names for both free and bound variables and Stoughton's multiple substitution. Our formalization is based on a proof by Ryo Kashima, in which a notion of beta-reducibility with a standard sequence is captured by an inductive relation. The proof uses only structural induction over the syntax and the relations defined, which is possible due to the specific formulation of substitution that we employ. The whole development has been machine-checked using the system Agda.
用多重代换的Lambda微积分标准化定理在构造型理论中的形式化
在Martin-L ' '中给出了Lambda微积分标准化定理的构造型理论的完整形式化,使用一阶语法对自由变量和有界变量都有一类名称,并使用Stoughton多重替换。我们的形式化是基于Ryo Kashima的一个证明,在这个证明中,标准序列的β -可约性的概念被一个归纳关系所捕获。证明只使用结构归纳法对语法和定义的关系,这是可能的,由于我们使用的替换的具体表述。使用Agda系统对整个开发过程进行了机检。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信