{"title":"Liver tumor ablation enhancement by induction-heating system with bitter-like deep magnetic field coil.","authors":"Chia-Ming Hung, C.C. Tai","doi":"10.1063/5.0066308","DOIUrl":null,"url":null,"abstract":"The heated metal needle used for tumor thermotherapy is considered crucial for enhancing the practicality of cauterization using electromagnetic induction-heating techniques. In this study, a novel coil capable of producing a deep magnetic field is designed. In the proposed design, the coil structure is improved to enhance the intensity of the coil's deep magnetic field and its suitability for deep-tissue cauterization. Furthermore, a series of experiments are conducted using a single and consistent input current. The heating experiments are conducted at varying depths by placing the needle beneath the coil. The proposed coil significantly increases the induction-heating temperature and provides a solution to the long-standing problem of insufficient needle temperature. This research has also improved the usability of the induction-heating equipment in the field of deep tumor ablation.","PeriodicalId":54761,"journal":{"name":"Journal of the Optical Society of America and Review of Scientific Instruments","volume":"63 1","pages":"054107"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of America and Review of Scientific Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0066308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The heated metal needle used for tumor thermotherapy is considered crucial for enhancing the practicality of cauterization using electromagnetic induction-heating techniques. In this study, a novel coil capable of producing a deep magnetic field is designed. In the proposed design, the coil structure is improved to enhance the intensity of the coil's deep magnetic field and its suitability for deep-tissue cauterization. Furthermore, a series of experiments are conducted using a single and consistent input current. The heating experiments are conducted at varying depths by placing the needle beneath the coil. The proposed coil significantly increases the induction-heating temperature and provides a solution to the long-standing problem of insufficient needle temperature. This research has also improved the usability of the induction-heating equipment in the field of deep tumor ablation.