Cooperative multiuser modulation classification in multipath channels via expectation-maximization

Jingwen Zhang, Fanggang Wang, Z. Zhong, D. Cabric
{"title":"Cooperative multiuser modulation classification in multipath channels via expectation-maximization","authors":"Jingwen Zhang, Fanggang Wang, Z. Zhong, D. Cabric","doi":"10.1109/ICC.2017.7996783","DOIUrl":null,"url":null,"abstract":"With the advent of cognitive radio (CR) and dynamic spectrum access techniques, where multiple signals may coexist within the same frequency band, multiuser modulation classification problem becomes a vital issue, which has not been sufficiently investigated. In this paper, we consider a cooperative multiuser modulation classification problem, in the presence of unknown multipath channels. A likelihood-based (LB) classifier using the expectation-maximization (EM) algorithm is proposed, which enables to find the maximum likelihood estimates (MLEs) iteratively. Numerical results show that the proposed algorithm achieves significant improvement on the classification performance with a small number of samples when compared to the conventional methods, which demonstrates its reliability and efficiency of identifying modulations of multiple users under the multipath scenarios.","PeriodicalId":6517,"journal":{"name":"2017 IEEE International Conference on Communications (ICC)","volume":"23 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.2017.7996783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

With the advent of cognitive radio (CR) and dynamic spectrum access techniques, where multiple signals may coexist within the same frequency band, multiuser modulation classification problem becomes a vital issue, which has not been sufficiently investigated. In this paper, we consider a cooperative multiuser modulation classification problem, in the presence of unknown multipath channels. A likelihood-based (LB) classifier using the expectation-maximization (EM) algorithm is proposed, which enables to find the maximum likelihood estimates (MLEs) iteratively. Numerical results show that the proposed algorithm achieves significant improvement on the classification performance with a small number of samples when compared to the conventional methods, which demonstrates its reliability and efficiency of identifying modulations of multiple users under the multipath scenarios.
基于期望最大化的多径信道合作多用户调制分类
随着认知无线电(CR)和动态频谱接入技术的出现,多个信号可能在同一频段内共存,多用户调制分类问题成为一个重要问题,但目前对该问题的研究还不够充分。本文研究了存在未知多径信道的协作多用户调制分类问题。提出了一种基于期望最大化算法的基于似然的分类器,该分类器能够迭代地找到最大似然估计。数值结果表明,与传统方法相比,该算法在少量样本下的分类性能有了显著提高,证明了该算法在多径场景下识别多用户调制的可靠性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信