Finite-horizon H∞ filtering for time-varying delay systems with randomly varying nonlinearities and sensor saturations

Jinling Liang, Fangbin Sun, Xiaohui Liu
{"title":"Finite-horizon H∞ filtering for time-varying delay systems with randomly varying nonlinearities and sensor saturations","authors":"Jinling Liang, Fangbin Sun, Xiaohui Liu","doi":"10.1080/21642583.2014.883339","DOIUrl":null,"url":null,"abstract":"This paper mainly focuses on the H∞ filtering problem for a class of discrete time-varying systems with delays and randomly varying nonlinearities and sensor saturations. Two sets of binary switching sequences taking values of 1 and 0 are introduced to account for the stochastic phenomena of nonlinearities and sensor saturations which occur and influence the dynamics of the system in a probabilistic way. To further reflect the realities of transmission failure in the measurement, missing observation case is also considered simultaneously. By appropriately constructing a time-varying Lyapunov function and utilizing the stochastic analysis technique, sufficient criteria are presented in terms of a set of recursive linear matrix inequalities (RLMIs) under which the filtering error dynamics achieves the prescribed H∞ performance over a finite horizon. Moreover, at each time point k, the time-varying filter parameters can be solved iteratively according to the explicit solutions of the RLMIs. Finally, a numerical simulation is exploited to demonstrate the effectiveness of the proposed filter design scheme.","PeriodicalId":22127,"journal":{"name":"Systems Science & Control Engineering: An Open Access Journal","volume":"13 1","pages":"108 - 118"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Science & Control Engineering: An Open Access Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642583.2014.883339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

This paper mainly focuses on the H∞ filtering problem for a class of discrete time-varying systems with delays and randomly varying nonlinearities and sensor saturations. Two sets of binary switching sequences taking values of 1 and 0 are introduced to account for the stochastic phenomena of nonlinearities and sensor saturations which occur and influence the dynamics of the system in a probabilistic way. To further reflect the realities of transmission failure in the measurement, missing observation case is also considered simultaneously. By appropriately constructing a time-varying Lyapunov function and utilizing the stochastic analysis technique, sufficient criteria are presented in terms of a set of recursive linear matrix inequalities (RLMIs) under which the filtering error dynamics achieves the prescribed H∞ performance over a finite horizon. Moreover, at each time point k, the time-varying filter parameters can be solved iteratively according to the explicit solutions of the RLMIs. Finally, a numerical simulation is exploited to demonstrate the effectiveness of the proposed filter design scheme.
具有随机变化非线性和传感器饱和度的时变时滞系统的有限地平线H∞滤波
本文主要研究一类具有时滞、随机变化非线性和传感器饱和度的离散时变系统的H∞滤波问题。引入了两组值为1和0的二进制开关序列,以解释非线性和传感器饱和的随机现象,这些随机现象以概率方式发生并影响系统的动力学。为了进一步反映测量中传输失效的实际情况,还同时考虑了缺失观测的情况。通过适当构造时变Lyapunov函数并利用随机分析技术,给出了一组递归线性矩阵不等式(rlmi)的充分判据,在该判据下滤波误差动态在有限视界内达到规定的H∞性能。此外,在每个时间点k处,可根据rlmi的显式解迭代求解时变滤波器参数。最后,通过数值仿真验证了所提滤波器设计方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信