Object segmentation under varying illumination: Stochastic background model considering spatial locality

T. Tanaka, Atsushi Shimada, Daisaku Arita, R. Taniguchi
{"title":"Object segmentation under varying illumination: Stochastic background model considering spatial locality","authors":"T. Tanaka, Atsushi Shimada, Daisaku Arita, R. Taniguchi","doi":"10.2201/NIIPI.2010.7.4","DOIUrl":null,"url":null,"abstract":"We propose a new method for background modeling. Our method is based on the two complementary approaches. One uses the probability density function (PDF) to approximate background model. The PDF is estimated non-parametrically by using Parzen density estimation. Then, foreground object is detected based on the estimated PDF. The method is based on the evaluation of the local texture at pixel-level resolution which reduces the effects of variations in lighting. Fusing those approachs realizes robust object detection under varying illumination. Several experiments show the effectiveness of our approach.","PeriodicalId":91638,"journal":{"name":"... Proceedings of the ... IEEE International Conference on Progress in Informatics and Computing. IEEE International Conference on Progress in Informatics and Computing","volume":"13 1","pages":"21-31"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"... Proceedings of the ... IEEE International Conference on Progress in Informatics and Computing. IEEE International Conference on Progress in Informatics and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2201/NIIPI.2010.7.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a new method for background modeling. Our method is based on the two complementary approaches. One uses the probability density function (PDF) to approximate background model. The PDF is estimated non-parametrically by using Parzen density estimation. Then, foreground object is detected based on the estimated PDF. The method is based on the evaluation of the local texture at pixel-level resolution which reduces the effects of variations in lighting. Fusing those approachs realizes robust object detection under varying illumination. Several experiments show the effectiveness of our approach.
变光照下的目标分割:考虑空间局部性的随机背景模型
提出了一种新的背景建模方法。我们的方法是基于两种互补的方法。一种是利用概率密度函数(PDF)近似背景模型。利用Parzen密度估计方法对PDF进行非参数估计。然后,基于估计的PDF检测前景目标。该方法基于像素级分辨率的局部纹理评估,减少了光照变化的影响。融合这些方法可以实现变光照条件下的鲁棒目标检测。几个实验证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信