Spatio-temporal Feature Based Multi-participant Recruitment in Heterogeneous Crowdsensing

IF 0.9 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Fengyuan Zhang, Zhiwen Yu, Yimeng Liu, Helei Cui, Bin Guo
{"title":"Spatio-temporal Feature Based Multi-participant Recruitment in Heterogeneous Crowdsensing","authors":"Fengyuan Zhang, Zhiwen Yu, Yimeng Liu, Helei Cui, Bin Guo","doi":"10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00048","DOIUrl":null,"url":null,"abstract":"Mobile crowdsensing (MCS) collects sensing data by recruiting task participants to realize large-scale sensing tasks in cities. However, due to the limitations of human activity range and sensing mode, relying only on human participants to achieve this process will lead to sensing blind areas, ultimately affecting the integrity and validity of sensing data. With the rise of unmanned vehicles (UVs) and sensor-assisted MCS research, it provides new inspirations for solving complex sensing tasks in smart cities. In this article, we propose heterogeneous crowdsensing, which includes heterogeneous participants such as human participants, UVs, and fixed sensors. Our goal is to accomplish large-scale, high-quality urban sensing tasks by collaborating with these three types of heterogeneous participants. To solve the collaborative sensing problem, we propose an algorithm called spatio-temporal PPO (STPPO). We first define the capability and cost attributes of the heterogeneous participants and then divide the large-scale sensing area into a set of subregions by a subgraph construction method. Based on the spatio-temporal characteristics of the subregions and the attributes of the heterogeneous participants, we finally solve the cooperative scheduling problem of the subregions using proximal policy optimization (PPO) algorithms to maximize the overall POI collection rate and collection fairness. Finally, extensive experiments are conducted based on real datasets. The overall results of STPPO outperform other baselines, with a 30.19% performance improvement compared to the PPO algorithm.","PeriodicalId":43791,"journal":{"name":"Scalable Computing-Practice and Experience","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scalable Computing-Practice and Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Mobile crowdsensing (MCS) collects sensing data by recruiting task participants to realize large-scale sensing tasks in cities. However, due to the limitations of human activity range and sensing mode, relying only on human participants to achieve this process will lead to sensing blind areas, ultimately affecting the integrity and validity of sensing data. With the rise of unmanned vehicles (UVs) and sensor-assisted MCS research, it provides new inspirations for solving complex sensing tasks in smart cities. In this article, we propose heterogeneous crowdsensing, which includes heterogeneous participants such as human participants, UVs, and fixed sensors. Our goal is to accomplish large-scale, high-quality urban sensing tasks by collaborating with these three types of heterogeneous participants. To solve the collaborative sensing problem, we propose an algorithm called spatio-temporal PPO (STPPO). We first define the capability and cost attributes of the heterogeneous participants and then divide the large-scale sensing area into a set of subregions by a subgraph construction method. Based on the spatio-temporal characteristics of the subregions and the attributes of the heterogeneous participants, we finally solve the cooperative scheduling problem of the subregions using proximal policy optimization (PPO) algorithms to maximize the overall POI collection rate and collection fairness. Finally, extensive experiments are conducted based on real datasets. The overall results of STPPO outperform other baselines, with a 30.19% performance improvement compared to the PPO algorithm.
基于时空特征的异构众感知多参与者招募
移动众测(Mobile crowdsensing, MCS)通过招募任务参与者收集传感数据,实现城市大规模的传感任务。然而,由于人类活动范围和传感方式的限制,仅依靠人类参与者来实现这一过程将导致传感盲区,最终影响传感数据的完整性和有效性。随着无人驾驶车辆(UVs)和传感器辅助MCS研究的兴起,它为解决智慧城市中复杂的传感任务提供了新的灵感。在本文中,我们提出了异质众感,包括异质参与者,如人类参与者、uv和固定传感器。我们的目标是通过与这三种类型的异构参与者合作来完成大规模、高质量的城市传感任务。为了解决协同感知问题,我们提出了一种时空PPO (spatial -temporal PPO)算法。首先定义异构参与者的能力和成本属性,然后采用子图构建方法将大尺度感知区域划分为一组子区域。基于子区域的时空特征和异构参与者的属性,采用近似策略优化(PPO)算法解决子区域的协同调度问题,以最大化整体POI收集率和收集公平性。最后,基于实际数据集进行了大量实验。STPPO的总体结果优于其他基准,与PPO算法相比,性能提高了30.19%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scalable Computing-Practice and Experience
Scalable Computing-Practice and Experience COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.00
自引率
0.00%
发文量
10
期刊介绍: The area of scalable computing has matured and reached a point where new issues and trends require a professional forum. SCPE will provide this avenue by publishing original refereed papers that address the present as well as the future of parallel and distributed computing. The journal will focus on algorithm development, implementation and execution on real-world parallel architectures, and application of parallel and distributed computing to the solution of real-life problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信