{"title":"A-trails of embedded graphs and twisted duals","authors":"Q. Yan, Xian'an Jin","doi":"10.26493/1855-3974.2053.c7b","DOIUrl":null,"url":null,"abstract":"Kotzig showed that every connected 4 -regular plane graph has an A -trail—an Eulerian circuit that turns either left or right at each vertex. However, this statement is not true for Eulerian plane graphs and determining if an Eulerian plane graph has an A -trail is NP-hard. The aim of this paper is to give a characterization of Eulerian embedded graphs having an A -trail. Andersen et al. showed the existence of orthogonal pairs of A -trails in checkerboard colourable 4 -regular graphs embedded on the plane, torus and projective plane. A problem posed in their paper is to characterize Eulerian embedded graphs (not necessarily checkerboard colourable) which contain two orthogonal A -trails. In this article, we solve this problem in terms of twisted duals. Several related results are also obtained.","PeriodicalId":8402,"journal":{"name":"Ars Math. Contemp.","volume":"12 1","pages":"2"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Math. Contemp.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/1855-3974.2053.c7b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Kotzig showed that every connected 4 -regular plane graph has an A -trail—an Eulerian circuit that turns either left or right at each vertex. However, this statement is not true for Eulerian plane graphs and determining if an Eulerian plane graph has an A -trail is NP-hard. The aim of this paper is to give a characterization of Eulerian embedded graphs having an A -trail. Andersen et al. showed the existence of orthogonal pairs of A -trails in checkerboard colourable 4 -regular graphs embedded on the plane, torus and projective plane. A problem posed in their paper is to characterize Eulerian embedded graphs (not necessarily checkerboard colourable) which contain two orthogonal A -trails. In this article, we solve this problem in terms of twisted duals. Several related results are also obtained.