Inferring Hidden Structure in Mobile Network Performance Data with Noisy Net Promoter Scores using a Probabilistic Graphical Model

J. D. Toit, L. Labuschagne
{"title":"Inferring Hidden Structure in Mobile Network Performance Data with Noisy Net Promoter Scores using a Probabilistic Graphical Model","authors":"J. D. Toit, L. Labuschagne","doi":"10.1109/EuCNC/6GSummit58263.2023.10188368","DOIUrl":null,"url":null,"abstract":"Understanding customer satisfaction in the context of mobile network performance is helpful when designing reliable cellular networks to retain customers and drive customer loyalty. Using Infer.NET, we propose a probabilistic graphical model that infers hidden structure in network key performance indicators using noisy customer survey responses. Our model uses real-world net promoter score survey data, network session data consisting of sites visited by respondents, and network performance data from active sessions. The model learns hidden structure in the network performance data that represent good and bad quality of experience. The discovered properties are consistent with industry-recommended signal strength and quality levels for UMTS and LTE standards. Furthermore, our methodology allows us to estimate a daily network performance for each site, which helps to identify problem areas in the network. Due to the subjective nature of survey data, our model also estimates the overall asymmetric noise associated with the surveys.","PeriodicalId":65870,"journal":{"name":"公共管理高层论坛","volume":"55 1","pages":"436-441"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"公共管理高层论坛","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding customer satisfaction in the context of mobile network performance is helpful when designing reliable cellular networks to retain customers and drive customer loyalty. Using Infer.NET, we propose a probabilistic graphical model that infers hidden structure in network key performance indicators using noisy customer survey responses. Our model uses real-world net promoter score survey data, network session data consisting of sites visited by respondents, and network performance data from active sessions. The model learns hidden structure in the network performance data that represent good and bad quality of experience. The discovered properties are consistent with industry-recommended signal strength and quality levels for UMTS and LTE standards. Furthermore, our methodology allows us to estimate a daily network performance for each site, which helps to identify problem areas in the network. Due to the subjective nature of survey data, our model also estimates the overall asymmetric noise associated with the surveys.
用概率图模型推断带有噪声的净启动值的移动网络性能数据中的隐藏结构
在移动网络性能的背景下理解客户满意度有助于设计可靠的蜂窝网络来留住客户和提高客户忠诚度。使用推断。. NET中,我们提出了一个概率图形模型,该模型使用噪声客户调查响应来推断网络关键性能指标中的隐藏结构。我们的模型使用真实世界的净推荐值调查数据、由受访者访问的网站组成的网络会话数据以及来自活动会话的网络性能数据。该模型学习网络性能数据中代表体验质量好坏的隐藏结构。发现的特性符合业界推荐的UMTS和LTE标准的信号强度和质量水平。此外,我们的方法允许我们估计每个站点的日常网络性能,这有助于确定网络中的问题区域。由于调查数据的主观性质,我们的模型还估计了与调查相关的总体不对称噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
385
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信