A Fast Deterministic Kmeans Initialization

O. Kettani, F. Ramdani
{"title":"A Fast Deterministic Kmeans Initialization","authors":"O. Kettani, F. Ramdani","doi":"10.5120/IJAIS2017451683","DOIUrl":null,"url":null,"abstract":"The k-means algorithm remains one of the most widely used clustering methods, in spite of its sensitivity to the initial settings. This paper explores a simple, computationally low, deterministic method which provides k-means with initial seeds to cluster a given data set. It is simply based on computing the means of k samples with equal parts taken from the given data set. We test and compare this method to the related well know kkz initialization algorithm for kmeans, using both simulated and real data, and find it to be more efficient in many cases. General Terms Data Mining,Clustering.","PeriodicalId":92376,"journal":{"name":"International journal of applied information systems","volume":"13 1","pages":"6-11"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied information systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5120/IJAIS2017451683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The k-means algorithm remains one of the most widely used clustering methods, in spite of its sensitivity to the initial settings. This paper explores a simple, computationally low, deterministic method which provides k-means with initial seeds to cluster a given data set. It is simply based on computing the means of k samples with equal parts taken from the given data set. We test and compare this method to the related well know kkz initialization algorithm for kmeans, using both simulated and real data, and find it to be more efficient in many cases. General Terms Data Mining,Clustering.
快速确定性Kmeans初始化
尽管k-means算法对初始设置很敏感,但它仍然是最广泛使用的聚类方法之一。本文探讨了一种简单,计算量低,确定性的方法,该方法为k-means提供初始种子来聚类给定数据集。它只是基于计算k个样本的均值,从给定的数据集中取等量的样本。我们使用模拟数据和真实数据对该方法与相关的kkz初始化算法进行了测试和比较,发现该方法在许多情况下更有效。数据挖掘,聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信