Variational Inference of Infinite Generalized Gaussian Mixture Models with Feature Selection

Srikanth Amudala, Samr Ali, N. Bouguila
{"title":"Variational Inference of Infinite Generalized Gaussian Mixture Models with Feature Selection","authors":"Srikanth Amudala, Samr Ali, N. Bouguila","doi":"10.1109/SMC42975.2020.9283007","DOIUrl":null,"url":null,"abstract":"This paper presents a variational learning framework for the infinite generalized Gaussian mixture (IGGM) model. The generalized Gaussian distribution (GGD) has a proven capability in modeling complex multidimensional data due to the flexibility of its shape parameter. Infinite model addresses the model selection problem; i.e., determination of the number of clusters without recourse to the classical selection criteria such that the number of mixture components increases automatically to best model available data accordingly. We also incorporate feature selection to consider the features that are most appropriate in constructing an approximate model in terms of clustering accuracy. Experimental results on a medical application and image categorization show the effectiveness of the proposed algorithm.","PeriodicalId":6718,"journal":{"name":"2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)","volume":"19 1","pages":"120-127"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMC42975.2020.9283007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a variational learning framework for the infinite generalized Gaussian mixture (IGGM) model. The generalized Gaussian distribution (GGD) has a proven capability in modeling complex multidimensional data due to the flexibility of its shape parameter. Infinite model addresses the model selection problem; i.e., determination of the number of clusters without recourse to the classical selection criteria such that the number of mixture components increases automatically to best model available data accordingly. We also incorporate feature selection to consider the features that are most appropriate in constructing an approximate model in terms of clustering accuracy. Experimental results on a medical application and image categorization show the effectiveness of the proposed algorithm.
具有特征选择的无限广义高斯混合模型的变分推理
本文提出了无限广义高斯混合模型的变分学习框架。广义高斯分布(GGD)由于其形状参数的灵活性,在复杂多维数据建模中具有良好的应用前景。无限模型解决了模型选择问题;即,在不依赖经典选择标准的情况下确定聚类的数量,从而使混合成分的数量自动增加到相应的最佳模型可用数据。我们还结合了特征选择,以考虑在聚类精度方面构建近似模型时最合适的特征。在医学应用和图像分类方面的实验结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信