Deep Learning aplicado a inspeção visual da presença de um componente de conjunto de eixo

Lucas Ferreira Luchi, Andre Gustavo Adami
{"title":"Deep Learning aplicado a inspeção visual da presença de um componente de conjunto de eixo","authors":"Lucas Ferreira Luchi, Andre Gustavo Adami","doi":"10.18226/23185279.v8iss2p135","DOIUrl":null,"url":null,"abstract":"identificação ou falta retenção montado eixo veicular partir de imagens. rede neural convolucional foi utilizada para aprender as características das imagens e realizar a classificação. O sistema foi avaliado utilizando uma base de imagens coletada ambiente real de uma Apesar desbalanceamento conjunto de dados, o método produziu resultados máximos sensibilidade, especificidade e F1-score. disso, arquitetura rede Abstract The evolution of industrial processes based on the concepts of smart factory in Industry 4.0 and the need to perform decision-making tasks less human-dependent should increasingly demand the industrial application of machine learning. In this sense, this work proposes the use deep learning to identify the presence or lack of a retaining ring at a vehicle axis end from images. A convolutional neural network was used to learn features from images e to perform classification. The system was evaluated using a dataset of images collected in a real industrial environment. Despite the dataset imbalance, the method yielded maximum results in sensitivity, specificity and F1-score. Thereafter, the neural network architecture was optimized (90% reduction of the number of parameters) to increase computational efficiency.","PeriodicalId":21696,"journal":{"name":"Scientia cum Industria","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia cum Industria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18226/23185279.v8iss2p135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

identificação ou falta retenção montado eixo veicular partir de imagens. rede neural convolucional foi utilizada para aprender as características das imagens e realizar a classificação. O sistema foi avaliado utilizando uma base de imagens coletada ambiente real de uma Apesar desbalanceamento conjunto de dados, o método produziu resultados máximos sensibilidade, especificidade e F1-score. disso, arquitetura rede Abstract The evolution of industrial processes based on the concepts of smart factory in Industry 4.0 and the need to perform decision-making tasks less human-dependent should increasingly demand the industrial application of machine learning. In this sense, this work proposes the use deep learning to identify the presence or lack of a retaining ring at a vehicle axis end from images. A convolutional neural network was used to learn features from images e to perform classification. The system was evaluated using a dataset of images collected in a real industrial environment. Despite the dataset imbalance, the method yielded maximum results in sensitivity, specificity and F1-score. Thereafter, the neural network architecture was optimized (90% reduction of the number of parameters) to increase computational efficiency.
深度学习应用于轴组件存在的视觉检测
识别或缺乏保留安装的车轴从图像。利用卷积神经网络学习图像特征并进行分类。该系统使用从真实环境中收集的图像进行评估,尽管数据集不平衡,但该方法产生了最大的灵敏度、特异性和F1评分结果。此外,网络架构抽象了工业4.0中基于智能工厂概念的工业过程的演变,以及执行较少依赖人类的决策任务的需要,应该增加对机器学习的工业应用的需求。在这方面,本工作建议使用深度学习来识别车辆轴端是否存在保留环。= =地理= =根据美国人口普查,这个县的面积为。利用在真实工业环境中收集的图像数据集对该系统进行了评估。尽管数据集不平衡,该方法在灵敏度、特异性和F1评分方面取得了最大的结果。因此,神经网络架构得到了优化(减少了90%的参数数量),以提高计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信