{"title":"The Effect of Pore Geometry on Relative Permeability in Mixed-Wet Carbonate Reservoirs in Abu Dhabi","authors":"M. Dernaika, S. Masalmeh","doi":"10.2118/197427-ms","DOIUrl":null,"url":null,"abstract":"\n Carbonate rocks are complex in their structures and pore geometries and often exhibit a challenge in their classification and behavior. Many rock properties remain unexplained and uncertain because of improper characterization and lack of data QC. The main objective of this paper is to study flow behavior of relative permeability with different rock types in complex carbonate reservoirs.\n Representative core samples were selected from two major hydrocarbon reservoirs in Abu Dhabi. Rock types were identified based on textural facies, PoroPerm characteristics and capillary pressure. Porosity ranged from 15% to 25%, while permeability varied from 1 mD to 50 mD. Primary drainage and imbibition water-oil relative permeability (Kr) curves were measured by the steady-state technique using live fluids at full reservoir conditions with in-situ saturation monitoring. High-rate bump floods were designed at the end of the flooding cycles to counter capillary end effects. Aging period of 4 weeks was incorporated at the end of the drainage cycle. Robust data QC was performed on the samples, and final validation of the relative permeability was conducted by numerical simulation of the raw data and measured capillary pressure.\n The followed QC procedure was crucial to eliminate artefact in the relative permeability curves for proper data evaluation. The different rock types showed consistent variations in the relative permeability hysteresis and end points. Imbibition relative permeability curves showed large variations within the different rock types, where Corey exponent to oil ‘no’ increased with permeability from 3 to 5, whereas the Corey exponent to water ‘nw’ decreased with permeability and ranged from 3 to 1.5. The variations in the relative permeability curves are argued to be the result of different rock structures and pore geometries. Variations were also seen in the end-point data and showed consistent behavior with the rock types.\n The different carbonate rock types were identified based on geological and petrophysical properties. Higher permeability samples were grain-dominated and more heterogeneous in comparison to the lower permeability samples, which were mud-dominated rock types. Imbibition Kr curves showed larger variations than the primary drainage data, which cannot be interpreted based on wettability considerations only. The relative permeability curves have been thoroughly evaluated and QC'd based on raw data of pressure and saturation by use of numerical simulation. Such RRT-based Kr data are not abundant in the literature, and hence should serve as an important piece of information in mixed-wet carbonate reservoirs.","PeriodicalId":11091,"journal":{"name":"Day 3 Wed, November 13, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, November 13, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/197427-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Carbonate rocks are complex in their structures and pore geometries and often exhibit a challenge in their classification and behavior. Many rock properties remain unexplained and uncertain because of improper characterization and lack of data QC. The main objective of this paper is to study flow behavior of relative permeability with different rock types in complex carbonate reservoirs.
Representative core samples were selected from two major hydrocarbon reservoirs in Abu Dhabi. Rock types were identified based on textural facies, PoroPerm characteristics and capillary pressure. Porosity ranged from 15% to 25%, while permeability varied from 1 mD to 50 mD. Primary drainage and imbibition water-oil relative permeability (Kr) curves were measured by the steady-state technique using live fluids at full reservoir conditions with in-situ saturation monitoring. High-rate bump floods were designed at the end of the flooding cycles to counter capillary end effects. Aging period of 4 weeks was incorporated at the end of the drainage cycle. Robust data QC was performed on the samples, and final validation of the relative permeability was conducted by numerical simulation of the raw data and measured capillary pressure.
The followed QC procedure was crucial to eliminate artefact in the relative permeability curves for proper data evaluation. The different rock types showed consistent variations in the relative permeability hysteresis and end points. Imbibition relative permeability curves showed large variations within the different rock types, where Corey exponent to oil ‘no’ increased with permeability from 3 to 5, whereas the Corey exponent to water ‘nw’ decreased with permeability and ranged from 3 to 1.5. The variations in the relative permeability curves are argued to be the result of different rock structures and pore geometries. Variations were also seen in the end-point data and showed consistent behavior with the rock types.
The different carbonate rock types were identified based on geological and petrophysical properties. Higher permeability samples were grain-dominated and more heterogeneous in comparison to the lower permeability samples, which were mud-dominated rock types. Imbibition Kr curves showed larger variations than the primary drainage data, which cannot be interpreted based on wettability considerations only. The relative permeability curves have been thoroughly evaluated and QC'd based on raw data of pressure and saturation by use of numerical simulation. Such RRT-based Kr data are not abundant in the literature, and hence should serve as an important piece of information in mixed-wet carbonate reservoirs.