L. Raja, A. Farithkhan, K. Vijayalakshmi, T. Sripriya, R. Krishnan, Keren Naomi Devnesh
{"title":"Design of Cubic Dielectric Resonator Antenna for Biomedical Application","authors":"L. Raja, A. Farithkhan, K. Vijayalakshmi, T. Sripriya, R. Krishnan, Keren Naomi Devnesh","doi":"10.1109/ICSES52305.2021.9633792","DOIUrl":null,"url":null,"abstract":"This paper describes the simple design of a dielectric resonator antenna for 2.4 GHz using a regular cubic resonator for biomedical applications. Dielectric resonator antennas (DRAs) are used at microwave and millimeter frequencies and consist of materials having a high dielectric constant that have high gain and directivity. The resonator is placed upon a copper-grounded fire-resistant substrate. The selected dielectric resonator has a resonant frequency fr = 2.4 GHz and dielectric constant εr = 9.8. Computer Simulation Technology (CST) Microwave Studio was used to perform the simulation and analysis. The gain of the proposed antenna is 1.508 dBi and the directivity is 2.121 dBi.","PeriodicalId":6777,"journal":{"name":"2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES)","volume":"56 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSES52305.2021.9633792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper describes the simple design of a dielectric resonator antenna for 2.4 GHz using a regular cubic resonator for biomedical applications. Dielectric resonator antennas (DRAs) are used at microwave and millimeter frequencies and consist of materials having a high dielectric constant that have high gain and directivity. The resonator is placed upon a copper-grounded fire-resistant substrate. The selected dielectric resonator has a resonant frequency fr = 2.4 GHz and dielectric constant εr = 9.8. Computer Simulation Technology (CST) Microwave Studio was used to perform the simulation and analysis. The gain of the proposed antenna is 1.508 dBi and the directivity is 2.121 dBi.