Gray-scale image enhancement using differential evolution optimization algorithm

Rohan Gupta, Smriti Sehgal
{"title":"Gray-scale image enhancement using differential evolution optimization algorithm","authors":"Rohan Gupta, Smriti Sehgal","doi":"10.1109/INCITE.2016.7857599","DOIUrl":null,"url":null,"abstract":"Differential Evolution algorithm (DE) is a search method that iteratively searches for the solutions of machine learning and engineering problems that involve optimization. This paper aims at displaying the effectiveness and adaptability of the DE algorithm to find the global optimal solutions iteratively for contrast enhancement of grayscale images. An image's contrast can be modified by gray-level adjustments to the pixel intensities of the original image with the help of a parameterized intensity transformation function. A quality function is used to judge the quality of the enhanced images which incorporates various conditions of image enhancement and is used as the fitness criterion. The Differential Evolution algorithm aims at maximizing the fitness function through adjustments to variables of the pixel intensity transformation function.","PeriodicalId":59618,"journal":{"name":"下一代","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"下一代","FirstCategoryId":"1092","ListUrlMain":"https://doi.org/10.1109/INCITE.2016.7857599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Differential Evolution algorithm (DE) is a search method that iteratively searches for the solutions of machine learning and engineering problems that involve optimization. This paper aims at displaying the effectiveness and adaptability of the DE algorithm to find the global optimal solutions iteratively for contrast enhancement of grayscale images. An image's contrast can be modified by gray-level adjustments to the pixel intensities of the original image with the help of a parameterized intensity transformation function. A quality function is used to judge the quality of the enhanced images which incorporates various conditions of image enhancement and is used as the fitness criterion. The Differential Evolution algorithm aims at maximizing the fitness function through adjustments to variables of the pixel intensity transformation function.
灰度图像增强的差分进化优化算法
差分进化算法(Differential Evolution algorithm, DE)是一种迭代搜索涉及优化的机器学习和工程问题解的搜索方法。本文旨在展示DE算法迭代寻找灰度图像对比度增强全局最优解的有效性和适应性。通过参数化强度变换函数,对原始图像的像素强度进行灰度级调整,可以修改图像的对比度。结合图像增强的各种条件,使用质量函数来判断增强图像的质量,并将其作为适应度准则。差分进化算法的目的是通过调整像素强度变换函数的变量,使适应度函数最大化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
6212
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信