{"title":"Preliminary Mechanical Property Assessment of an Ultra SCS®/Ti-22A1-23Nb Composite","authors":"A. Rosenberger, Preston M. Smith, S. Russ","doi":"10.1520/CTR10617J","DOIUrl":null,"url":null,"abstract":"The mechanical performance of an orthorhombic-based titanium aluminide matrix composite (OTMC) reinforced with Ultra SCS® silicon carbide continuous monofilament (i.e., Ultra SCS®/Ti-22Al-23Nb) was investigated. Tensile properties, creep resistance, isothermal fatigue, and thermomechanical fatigue were examined over the temperature range from 20 to 760°C, with the bulk of the testing conducted at the upper end of this range to more fully characterize the high-temperature performance of this new composite system. A comparison was made with two similar OTMCs consisting of SCS-6 and Trimarc 1® silicon carbide fiber reinforcement of a Ti-22Al-23Nb matrix. In general, the longitudinal properties benefited significantly as a result of the higher-strength Ultra SCS® fiber. Both the cyclic behavior, isothermal fatigue, and in-phase thermomechanical fatigue, as well as static properties, tension, and creep were improved. However, matrix-dominated performance, including out-of-phase thermomechanical fatigue and transverse properties, was similar or exhibited a slight debit in the Ultra SCS®/Ti-22Al-23 composite. The demonstrated improvement in longitudinal properties makes the Ultra SCS® composite system an excellent choice for rotating components in advanced gas turbine engine applications. However, improvements in transverse properties may still be required for those applications subjected to appreciable off-axis loads.","PeriodicalId":15514,"journal":{"name":"Journal of Composites Technology & Research","volume":"66 1","pages":"164-172"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composites Technology & Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/CTR10617J","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The mechanical performance of an orthorhombic-based titanium aluminide matrix composite (OTMC) reinforced with Ultra SCS® silicon carbide continuous monofilament (i.e., Ultra SCS®/Ti-22Al-23Nb) was investigated. Tensile properties, creep resistance, isothermal fatigue, and thermomechanical fatigue were examined over the temperature range from 20 to 760°C, with the bulk of the testing conducted at the upper end of this range to more fully characterize the high-temperature performance of this new composite system. A comparison was made with two similar OTMCs consisting of SCS-6 and Trimarc 1® silicon carbide fiber reinforcement of a Ti-22Al-23Nb matrix. In general, the longitudinal properties benefited significantly as a result of the higher-strength Ultra SCS® fiber. Both the cyclic behavior, isothermal fatigue, and in-phase thermomechanical fatigue, as well as static properties, tension, and creep were improved. However, matrix-dominated performance, including out-of-phase thermomechanical fatigue and transverse properties, was similar or exhibited a slight debit in the Ultra SCS®/Ti-22Al-23 composite. The demonstrated improvement in longitudinal properties makes the Ultra SCS® composite system an excellent choice for rotating components in advanced gas turbine engine applications. However, improvements in transverse properties may still be required for those applications subjected to appreciable off-axis loads.