Recent progress of transport theory in Dirac quantum materials

IF 0.8 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Wang Huan-Wen, Fu Bo, Shen Shun-Qing
{"title":"Recent progress of transport theory in Dirac quantum materials","authors":"Wang Huan-Wen, Fu Bo, Shen Shun-Qing","doi":"10.7498/aps.72.20230672","DOIUrl":null,"url":null,"abstract":"Dirac quantum materials comprise a broad category of condensed matter systems characterized by low-energy excitations described by the Dirac equation. These excitations, which can manifest as either collective states or band structure effects, have been identified in a wide range of systems, from exotic quantum fluids to crystalline materials. Over the past several decades, they have sparked extensive experimental and theoretical investigations in various materials, such as topological insulators and topological semimetals. The study of Dirac quantum materials has also opened up new possibilities for topological quantum computing, giving rise to a burgeoning field of physics and offering a novel platform for realizing rich topological phases, including various quantum Hall effects and topological superconducting phases. Furthermore, the topologically non-trivial band structures of Dirac quantum materials give rise to plentiful intriguing transport phenomena, including longitudinal negative magnetoresistance, quantum interference effects, and helical magnetic effects, among others. Currently, numerous transport phenomena in Dirac quantum materials remain poorly understood from a theoretical standpoint, such as linear magnetoresistance in weak fields, anomalous Hall effects in nonmagnetic materials, and three-dimensional quantum Hall effects. Investigating these transport properties will not only deepen our understanding of Dirac quantum materials but also provide crucial insights for their potential applications in spintronics and quantum computing. This review provides a comprehensive overview of the quantum transport theory and quantum anomaly effects related to the Dirac equation, with a focus on massive Dirac fermions and quantum anomalous semimetals. Additionally, it offers insights into the realization of parity anomaly and half-quantized quantum Hall effects in semi-magnetic topological insulators. Lastly, the review discusses the key scientific questions of interest in the field of quantum transport theory.","PeriodicalId":6995,"journal":{"name":"物理学报","volume":"64 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理学报","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.7498/aps.72.20230672","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dirac quantum materials comprise a broad category of condensed matter systems characterized by low-energy excitations described by the Dirac equation. These excitations, which can manifest as either collective states or band structure effects, have been identified in a wide range of systems, from exotic quantum fluids to crystalline materials. Over the past several decades, they have sparked extensive experimental and theoretical investigations in various materials, such as topological insulators and topological semimetals. The study of Dirac quantum materials has also opened up new possibilities for topological quantum computing, giving rise to a burgeoning field of physics and offering a novel platform for realizing rich topological phases, including various quantum Hall effects and topological superconducting phases. Furthermore, the topologically non-trivial band structures of Dirac quantum materials give rise to plentiful intriguing transport phenomena, including longitudinal negative magnetoresistance, quantum interference effects, and helical magnetic effects, among others. Currently, numerous transport phenomena in Dirac quantum materials remain poorly understood from a theoretical standpoint, such as linear magnetoresistance in weak fields, anomalous Hall effects in nonmagnetic materials, and three-dimensional quantum Hall effects. Investigating these transport properties will not only deepen our understanding of Dirac quantum materials but also provide crucial insights for their potential applications in spintronics and quantum computing. This review provides a comprehensive overview of the quantum transport theory and quantum anomaly effects related to the Dirac equation, with a focus on massive Dirac fermions and quantum anomalous semimetals. Additionally, it offers insights into the realization of parity anomaly and half-quantized quantum Hall effects in semi-magnetic topological insulators. Lastly, the review discusses the key scientific questions of interest in the field of quantum transport theory.
狄拉克量子材料输运理论的最新进展
狄拉克量子材料包括以狄拉克方程描述的低能量激发为特征的凝聚态物质系统的一个广泛类别。这些激发可以表现为集体状态或带结构效应,已经在广泛的系统中被发现,从奇异量子流体到晶体材料。在过去的几十年里,它们在各种材料中引发了广泛的实验和理论研究,如拓扑绝缘体和拓扑半金属。狄拉克量子材料的研究也为拓扑量子计算开辟了新的可能性,催生了一个新兴的物理学领域,并为实现丰富的拓扑相提供了一个新的平台,包括各种量子霍尔效应和拓扑超导相。此外,狄拉克量子材料的拓扑非平凡带结构产生了大量有趣的输运现象,包括纵向负磁阻、量子干涉效应和螺旋磁效应等。目前,从理论的角度来看,对狄拉克量子材料中的许多输运现象仍然知之甚少,例如弱场中的线性磁电阻、非磁性材料中的反常霍尔效应和三维量子霍尔效应。研究这些输运性质不仅将加深我们对狄拉克量子材料的理解,而且还将为它们在自旋电子学和量子计算中的潜在应用提供重要的见解。本文综述了与狄拉克方程相关的量子输运理论和量子异常效应,重点介绍了大质量狄拉克费米子和量子异常半金属。此外,它还提供了在半磁性拓扑绝缘体中实现宇称异常和半量子化量子霍尔效应的见解。最后,本文讨论了量子输运理论领域的关键科学问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
物理学报
物理学报 物理-物理:综合
CiteScore
1.70
自引率
30.00%
发文量
31245
审稿时长
1.9 months
期刊介绍: Acta Physica Sinica (Acta Phys. Sin.) is supervised by Chinese Academy of Sciences and sponsored by Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences. Published by Chinese Physical Society and launched in 1933, it is a semimonthly journal with about 40 articles per issue. It publishes original and top quality research papers, rapid communications and reviews in all branches of physics in Chinese. Acta Phys. Sin. enjoys high reputation among Chinese physics journals and plays a key role in bridging China and rest of the world in physics research. Specific areas of interest include: Condensed matter and materials physics; Atomic, molecular, and optical physics; Statistical, nonlinear, and soft matter physics; Plasma physics; Interdisciplinary physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信