Genetic Algorithm Tuning Applied to the Open Shop Scheduling Problem

Chaouqi Mohsine, Benhra Jamal, My Ali
{"title":"Genetic Algorithm Tuning Applied to the Open Shop Scheduling Problem","authors":"Chaouqi Mohsine, Benhra Jamal, My Ali","doi":"10.5120/IJAIS2016451588","DOIUrl":null,"url":null,"abstract":"The present paper deals with the open-shop scheduling problem using a manual tuning of a genetic algorithm’s parameters. A comparison has been performed between Taillard’s Benchmarks for 60 instances, 2 dispatching rules and 198 variants from the GA algorithm obtained by changing the population size, the generation’s number, the crossover probability, and the mutation probability. Interesting results were obtained leading to some conclusions for the best choice of the parameters. General Terms Scheduling, Genetic Algorithms","PeriodicalId":92376,"journal":{"name":"International journal of applied information systems","volume":"28 1","pages":"21-25"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied information systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5120/IJAIS2016451588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The present paper deals with the open-shop scheduling problem using a manual tuning of a genetic algorithm’s parameters. A comparison has been performed between Taillard’s Benchmarks for 60 instances, 2 dispatching rules and 198 variants from the GA algorithm obtained by changing the population size, the generation’s number, the crossover probability, and the mutation probability. Interesting results were obtained leading to some conclusions for the best choice of the parameters. General Terms Scheduling, Genetic Algorithms
遗传算法在开放式车间调度问题中的应用
本文用遗传算法的参数手动调优来研究开放式车间调度问题。通过改变种群大小、代数、交叉概率和突变概率,对遗传算法得到的60个实例、2条调度规则和198个变体的Taillard基准进行了比较。得到了一些有趣的结果,并得出了一些关于最佳参数选择的结论。通用术语调度,遗传算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信