Visual Madlibs: Fill in the Blank Description Generation and Question Answering

Licheng Yu, Eunbyung Park, A. Berg, Tamara L. Berg
{"title":"Visual Madlibs: Fill in the Blank Description Generation and Question Answering","authors":"Licheng Yu, Eunbyung Park, A. Berg, Tamara L. Berg","doi":"10.1109/ICCV.2015.283","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new dataset consisting of 360,001 focused natural language descriptions for 10,738 images. This dataset, the Visual Madlibs dataset, is collected using automatically produced fill-in-the-blank templates designed to gather targeted descriptions about: people and objects, their appearances, activities, and interactions, as well as inferences about the general scene or its broader context. We provide several analyses of the Visual Madlibs dataset and demonstrate its applicability to two new description generation tasks: focused description generation, and multiple-choice question-answering for images. Experiments using joint-embedding and deep learning methods show promising results on these tasks.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"C1 1","pages":"2461-2469"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"135","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 135

Abstract

In this paper, we introduce a new dataset consisting of 360,001 focused natural language descriptions for 10,738 images. This dataset, the Visual Madlibs dataset, is collected using automatically produced fill-in-the-blank templates designed to gather targeted descriptions about: people and objects, their appearances, activities, and interactions, as well as inferences about the general scene or its broader context. We provide several analyses of the Visual Madlibs dataset and demonstrate its applicability to two new description generation tasks: focused description generation, and multiple-choice question-answering for images. Experiments using joint-embedding and deep learning methods show promising results on these tasks.
Visual Madlibs:填空描述生成和问题回答
在本文中,我们引入了一个新的数据集,该数据集由360,001个聚焦的自然语言描述组成,涉及10,738个图像。这个数据集,即Visual Madlibs数据集,是使用自动生成的填空模板收集的,该模板旨在收集关于以下方面的目标描述:人和物体、它们的外观、活动和交互,以及关于一般场景或更广泛背景的推断。我们对Visual Madlibs数据集进行了一些分析,并展示了它对两个新的描述生成任务的适用性:集中描述生成和图像的多项选择题回答。使用联合嵌入和深度学习方法的实验在这些任务上显示了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信