Sums of One Prime Power and Four Prime Cubes in Short Intervals

IF 0.7 Q2 MATHEMATICS
Gen Li, Xianjiu Huang, Xiaoming Pan, Li Yang
{"title":"Sums of One Prime Power and Four Prime Cubes in Short Intervals","authors":"Gen Li, Xianjiu Huang, Xiaoming Pan, Li Yang","doi":"10.1155/2023/3244257","DOIUrl":null,"url":null,"abstract":"<jats:p>Let <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mi>k</mi>\n <mo>⩾</mo>\n <mn>1</mn>\n </math>\n </jats:inline-formula> be an integer. In this study, we derive an asymptotic formula for the average number of representations of integers <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>n</mi>\n <mo>=</mo>\n <msubsup>\n <mrow>\n <mi>p</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n <mrow>\n <mi>k</mi>\n </mrow>\n </msubsup>\n <mo>+</mo>\n <msubsup>\n <mrow>\n <mi>p</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msubsup>\n <mo>+</mo>\n <msubsup>\n <mrow>\n <mi>p</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msubsup>\n <mo>+</mo>\n <msubsup>\n <mrow>\n <mi>p</mi>\n </mrow>\n <mrow>\n <mn>4</mn>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msubsup>\n <mo>+</mo>\n <msubsup>\n <mrow>\n <mi>p</mi>\n </mrow>\n <mrow>\n <mn>5</mn>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msubsup>\n </math>\n </jats:inline-formula> in short intervals, where <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <msub>\n <mrow>\n <mi>p</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>p</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>p</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>p</mi>\n </mrow>\n <mrow>\n <mn>4</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>p</mi>\n </mrow>\n <mrow>\n <mn>5</mn>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> are prime numbers.</jats:p>","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":"8 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3244257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let k 1 be an integer. In this study, we derive an asymptotic formula for the average number of representations of integers n = p 1 k + p 2 3 + p 3 3 + p 4 3 + p 5 3 in short intervals, where p 1 , p 2 , p 3 , p 4 , p 5 are prime numbers.
短区间内一素数幂与四素数立方的和
让k小于1是一个整数。在这项研究中,我们导出了整数n = p1k +的平均表示次数的渐近公式p3 + p33 + p4 + 3 +p53在短时间间隔,其中p1,p2 p3,p4,p5是质数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信