Modeling morphological learning, typology, and change: What can the neural sequence-to-sequence framework contribute?

Q2 Social Sciences
M. Elsner, Andrea D. Sims, Alexander Erdmann, A. Hernandez, Evan Jaffe, Lifeng Jin, Martha Booker Johnson, Shuan O. Karim, David L. King, Luana Lamberti Nunes, Byung-Doh Oh, Nathan Rasmussen, Cory Shain, Stephanie Antetomaso, Kendra V. Dickinson, N. Diewald, Michelle Mckenzie, S. Stevens-Guille
{"title":"Modeling morphological learning, typology, and change: What can the neural sequence-to-sequence framework contribute?","authors":"M. Elsner, Andrea D. Sims, Alexander Erdmann, A. Hernandez, Evan Jaffe, Lifeng Jin, Martha Booker Johnson, Shuan O. Karim, David L. King, Luana Lamberti Nunes, Byung-Doh Oh, Nathan Rasmussen, Cory Shain, Stephanie Antetomaso, Kendra V. Dickinson, N. Diewald, Michelle Mckenzie, S. Stevens-Guille","doi":"10.15398/jlm.v7i1.244","DOIUrl":null,"url":null,"abstract":"We survey research using neural sequence-to-sequence models as compu-tational models of morphological learning and learnability. We discusstheir use in determining the predictability of inflectional exponents, inmaking predictions about language acquisition and in modeling languagechange. Finally, we make some proposals for future work in these areas.","PeriodicalId":53310,"journal":{"name":"Journal of Language Modelling","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Language Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15398/jlm.v7i1.244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 11

Abstract

We survey research using neural sequence-to-sequence models as compu-tational models of morphological learning and learnability. We discusstheir use in determining the predictability of inflectional exponents, inmaking predictions about language acquisition and in modeling languagechange. Finally, we make some proposals for future work in these areas.
形态学习、类型学和变化建模:神经序列到序列框架的贡献是什么?
我们调查了使用神经序列到序列模型作为形态学学习和可学习性计算模型的研究。我们讨论了它们在确定屈折指数的可预测性、对语言习得进行预测和语言变化建模方面的应用。最后,对今后的工作提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Language Modelling
Journal of Language Modelling Social Sciences-Linguistics and Language
CiteScore
1.30
自引率
0.00%
发文量
4
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信