{"title":"Design and Device Modeling of Lead Free CsSnI3 Perovskite Solar Cell","authors":"Y. Kumar, Sweta Minj, N. Shukla, S. Tiwari","doi":"10.52228/jrub.2022-35-1-4","DOIUrl":null,"url":null,"abstract":"\n Research of lead-free Perovskite based solar cells has gained speedy and growing attention with urgent intent to eliminate toxic lead in Perovskite materials. The main purpose of this work is to supplement the research progress with comparative analysis of different lead-free Perovskite based solar cells by numerical simulation method using solar cell capacitance simulator (SCAPS-1D) software. The environmental friendliness and excellent thermal stability proves Cesium Tin Iodide (CsSnI3) as one of the promising materials for the commercialization of the Perovskite solar cells. However, CsSnI3 solar cells suffer from poor efficiency due to having low open-circuit voltage, VOC attributed to poor absorber film quality as well as energy level mismatch at the interfaces between different layers like transparent front contact. The architecture of the solar cell is n-i-p device structure acts as light CsSnI3 absorber active layer, TiO2 as electron transport layer and Spiro-OMeTAD as hole transport layer with device structure FTO/ TiO2/CsSnI3 / Spiro-OMeTAD /Au. The open circuit voltage Voc, short circuit current density Isc, fill factor and power conversion efficiency Voc=1.09V, Jsc=28.85mA/cm2, FF=88.65%, eta=28.09%, V_MPP=0.99V, J_MPP=28.15 mA/cm2 respectively. \n","PeriodicalId":17214,"journal":{"name":"Journal of Ravishankar University (PART-B)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ravishankar University (PART-B)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52228/jrub.2022-35-1-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Research of lead-free Perovskite based solar cells has gained speedy and growing attention with urgent intent to eliminate toxic lead in Perovskite materials. The main purpose of this work is to supplement the research progress with comparative analysis of different lead-free Perovskite based solar cells by numerical simulation method using solar cell capacitance simulator (SCAPS-1D) software. The environmental friendliness and excellent thermal stability proves Cesium Tin Iodide (CsSnI3) as one of the promising materials for the commercialization of the Perovskite solar cells. However, CsSnI3 solar cells suffer from poor efficiency due to having low open-circuit voltage, VOC attributed to poor absorber film quality as well as energy level mismatch at the interfaces between different layers like transparent front contact. The architecture of the solar cell is n-i-p device structure acts as light CsSnI3 absorber active layer, TiO2 as electron transport layer and Spiro-OMeTAD as hole transport layer with device structure FTO/ TiO2/CsSnI3 / Spiro-OMeTAD /Au. The open circuit voltage Voc, short circuit current density Isc, fill factor and power conversion efficiency Voc=1.09V, Jsc=28.85mA/cm2, FF=88.65%, eta=28.09%, V_MPP=0.99V, J_MPP=28.15 mA/cm2 respectively.