Intersection curve of two parametric surfaces in Euclidean n-space

IF 0.3 Q4 MATHEMATICS
M. Düldül, Merih Özçetin
{"title":"Intersection curve of two parametric surfaces in Euclidean n-space","authors":"M. Düldül, Merih Özçetin","doi":"10.12697/acutm.2021.25.17","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to study the differential geometric properties of the intersection curve of two parametric surfaces in Euclidean n-space. For this aim, we first present the mth order derivative formula of a curve lying on a parametric surface. Then, we obtain curvatures and Frenet vectors of the transversal intersection curve of two parametric surfaces in Euclidean n-space. We also provide computer code produced in MATLAB to simplify determining the coefficients relative to Frenet frame of higher order derivatives of a curve.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"97 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/acutm.2021.25.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to study the differential geometric properties of the intersection curve of two parametric surfaces in Euclidean n-space. For this aim, we first present the mth order derivative formula of a curve lying on a parametric surface. Then, we obtain curvatures and Frenet vectors of the transversal intersection curve of two parametric surfaces in Euclidean n-space. We also provide computer code produced in MATLAB to simplify determining the coefficients relative to Frenet frame of higher order derivatives of a curve.
欧几里德n空间中两个参数曲面的相交曲线
本文的目的是研究欧几里德n空间中两个参数曲面相交曲线的微分几何性质。为此,我们首先给出了位于参数曲面上的曲线的m阶导数公式。然后,我们得到了两个参数曲面在欧氏n空间中的横交曲线的曲率和Frenet向量。我们还提供了在MATLAB中生成的计算机代码,以简化确定曲线的高阶导数相对于Frenet框架的系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信