Fernando Gama, A. Marques, Alejandro Ribeiro, G. Leus
{"title":"Aggregation Graph Neural Networks","authors":"Fernando Gama, A. Marques, Alejandro Ribeiro, G. Leus","doi":"10.1109/ICASSP.2019.8682975","DOIUrl":null,"url":null,"abstract":"Graph neural networks (GNNs) regularize classical neural networks by exploiting the underlying irregular structure supporting graph data, extending its application to broader data domains. The aggregation GNN presented here is a novel GNN that exploits the fact that the data collected at a single node by means of successive local exchanges with neighbors exhibits a regular structure. Thus, regular convolution and regular pooling yield an appropriately regularized GNN. To address some scalability issues that arise when collecting all the information at a single node, we propose a multi-node aggregation GNN that constructs regional features that are later aggregated into more global features and so on. We show superior performance in a source localization problem on synthetic graphs and on the authorship attribution problem.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"150 1","pages":"4943-4947"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8682975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Graph neural networks (GNNs) regularize classical neural networks by exploiting the underlying irregular structure supporting graph data, extending its application to broader data domains. The aggregation GNN presented here is a novel GNN that exploits the fact that the data collected at a single node by means of successive local exchanges with neighbors exhibits a regular structure. Thus, regular convolution and regular pooling yield an appropriately regularized GNN. To address some scalability issues that arise when collecting all the information at a single node, we propose a multi-node aggregation GNN that constructs regional features that are later aggregated into more global features and so on. We show superior performance in a source localization problem on synthetic graphs and on the authorship attribution problem.