Framework for mining event correlations and time lags in large event sequences

M. Zoller, M. Baum, Marco F. Huber
{"title":"Framework for mining event correlations and time lags in large event sequences","authors":"M. Zoller, M. Baum, Marco F. Huber","doi":"10.1109/INDIN.2017.8104876","DOIUrl":null,"url":null,"abstract":"Event correlation is the task of detecting dependencies between events in event sequences, e.g., for predictive maintenance based on log-files. In this work, a new data-driven, generic framework for event correlation is presented. First, we use a fast preliminary test statistic to determine candidate event type pairs. Next, the precise distribution of the time lag between those pairs is calculated. For this purpose, a new efficient iterative method is developed that aligns two event sequences and finds the optimal event assignments. In our experiments, the proposed method is orders of magnitude faster than state-of-the-art methods but always yields similar (or even better) results.","PeriodicalId":6595,"journal":{"name":"2017 IEEE 15th International Conference on Industrial Informatics (INDIN)","volume":"53 1","pages":"805-810"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 15th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2017.8104876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Event correlation is the task of detecting dependencies between events in event sequences, e.g., for predictive maintenance based on log-files. In this work, a new data-driven, generic framework for event correlation is presented. First, we use a fast preliminary test statistic to determine candidate event type pairs. Next, the precise distribution of the time lag between those pairs is calculated. For this purpose, a new efficient iterative method is developed that aligns two event sequences and finds the optimal event assignments. In our experiments, the proposed method is orders of magnitude faster than state-of-the-art methods but always yields similar (or even better) results.
在大事件序列中挖掘事件相关性和时间滞后的框架
事件关联是检测事件序列中事件之间的依赖关系的任务,例如,用于基于日志文件的预测性维护。在这项工作中,提出了一个新的数据驱动的通用事件关联框架。首先,我们使用快速初步测试统计来确定候选事件类型对。接下来,计算这些对之间的时间滞后的精确分布。为此,提出了一种新的高效迭代方法,对两个事件序列进行对齐,并找到最优的事件分配。在我们的实验中,提出的方法比最先进的方法快几个数量级,但总是产生相似(甚至更好)的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信