A dataflow system for anomaly detection and analysis

A. Bara, Xinyu Niu, W. Luk
{"title":"A dataflow system for anomaly detection and analysis","authors":"A. Bara, Xinyu Niu, W. Luk","doi":"10.1109/FPT.2014.7082793","DOIUrl":null,"url":null,"abstract":"This paper proposes DeADA, a dataflow architecture incorporating an automated, unsupervised and online learning algorithm. Compared with 24 core software implementations, DeADA achieves up to 6.17 times lower data drop rate and 10.7 times higher power efficiency. More importantly, experimental results for the Heartbleed case study suggest that DeADA is capable of detecting unknown attacks under network speeds of at least 18Mbps, a feature which is essential for modern network intrusion detection.","PeriodicalId":6877,"journal":{"name":"2014 International Conference on Field-Programmable Technology (FPT)","volume":"63 1","pages":"276-279"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2014.7082793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper proposes DeADA, a dataflow architecture incorporating an automated, unsupervised and online learning algorithm. Compared with 24 core software implementations, DeADA achieves up to 6.17 times lower data drop rate and 10.7 times higher power efficiency. More importantly, experimental results for the Heartbleed case study suggest that DeADA is capable of detecting unknown attacks under network speeds of at least 18Mbps, a feature which is essential for modern network intrusion detection.
一个用于异常检测和分析的数据流系统
本文提出了一种包含自动、无监督和在线学习算法的数据流体系结构DeADA。与24核软件实现相比,DeADA的数据丢失率降低了6.17倍,功耗效率提高了10.7倍。更重要的是,心脏出血案例研究的实验结果表明,DeADA能够在至少18Mbps的网络速度下检测未知攻击,这是现代网络入侵检测必不可少的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信