Sketching Approximability of (Weak) Monarchy Predicates

Chi-Ning Chou, Alexander Golovnev, Amirbehshad Shahrasbi, M. Sudan, Santhoshini Velusamy
{"title":"Sketching Approximability of (Weak) Monarchy Predicates","authors":"Chi-Ning Chou, Alexander Golovnev, Amirbehshad Shahrasbi, M. Sudan, Santhoshini Velusamy","doi":"10.48550/arXiv.2205.02345","DOIUrl":null,"url":null,"abstract":"We analyze the sketching approximability of constraint satisfaction problems on Boolean domains, where the constraints are balanced linear threshold functions applied to literals. In~particular, we explore the approximability of monarchy-like functions where the value of the function is determined by a weighted combination of the vote of the first variable (the president) and the sum of the votes of all remaining variables. The pure version of this function is when the president can only be overruled by when all remaining variables agree. For every $k \\geq 5$, we show that CSPs where the underlying predicate is a pure monarchy function on $k$ variables have no non-trivial sketching approximation algorithm in $o(\\sqrt{n})$ space. We also show infinitely many weaker monarchy functions for which CSPs using such constraints are non-trivially approximable by $O(\\log(n))$ space sketching algorithms. Moreover, we give the first example of sketching approximable asymmetric Boolean CSPs. Our results work within the framework of Chou, Golovnev, Sudan, and Velusamy (FOCS 2021) that characterizes the sketching approximability of all CSPs. Their framework can be applied naturally to get a computer-aided analysis of the approximability of any specific constraint satisfaction problem. The novelty of our work is in using their work to get an analysis that applies to infinitely many problems simultaneously.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"10 1","pages":"35:1-35:17"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.02345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We analyze the sketching approximability of constraint satisfaction problems on Boolean domains, where the constraints are balanced linear threshold functions applied to literals. In~particular, we explore the approximability of monarchy-like functions where the value of the function is determined by a weighted combination of the vote of the first variable (the president) and the sum of the votes of all remaining variables. The pure version of this function is when the president can only be overruled by when all remaining variables agree. For every $k \geq 5$, we show that CSPs where the underlying predicate is a pure monarchy function on $k$ variables have no non-trivial sketching approximation algorithm in $o(\sqrt{n})$ space. We also show infinitely many weaker monarchy functions for which CSPs using such constraints are non-trivially approximable by $O(\log(n))$ space sketching algorithms. Moreover, we give the first example of sketching approximable asymmetric Boolean CSPs. Our results work within the framework of Chou, Golovnev, Sudan, and Velusamy (FOCS 2021) that characterizes the sketching approximability of all CSPs. Their framework can be applied naturally to get a computer-aided analysis of the approximability of any specific constraint satisfaction problem. The novelty of our work is in using their work to get an analysis that applies to infinitely many problems simultaneously.
(弱)君主制谓词的近似性概述
我们分析了布尔域上约束满足问题的草图逼近性,其中约束是应用于文字的平衡线性阈值函数。特别地,我们探讨了类似君主制的函数的近似性,其中函数的值由第一个变量(总统)的投票和所有剩余变量的投票之和的加权组合决定。这个函数的纯粹版本是,只有当所有剩余变量都同意时,总统才能被推翻。对于每一个$k \geq 5$,我们证明了底层谓词是$k$变量上的纯君主制函数的csp在$o(\sqrt{n})$空间中没有非平凡的草图逼近算法。我们还证明了无穷多个较弱的君主制函数,对于这些函数,使用这些约束的csp可以通过$O(\log(n))$空间草图算法非平凡地逼近。此外,我们给出了第一个绘制近似非对称布尔csp的例子。我们的结果在Chou, Golovnev, Sudan和Velusamy (FOCS 2021)的框架内工作,该框架表征了所有csp的草图近似性。他们的框架可以很自然地应用于对任何特定约束满足问题的近似性进行计算机辅助分析。我们工作的新颖之处在于利用他们的成果得到了一种同时适用于无限多个问题的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信