Generating W states with braiding operators

Pramod Padmanabhan, Fumihiko Sugino, Diego Trancanelli
{"title":"Generating W states with braiding operators","authors":"Pramod Padmanabhan, Fumihiko Sugino, Diego Trancanelli","doi":"10.26421/QIC20.13-14","DOIUrl":null,"url":null,"abstract":"Braiding operators can be used to create entangled states out of product states, thus establishing a correspondence between topological and quantum entanglement. This is well-known for maximally entangled Bell and GHZ states and their equivalent states under Stochastic Local Operations and Classical Communication, but so far a similar result for W states was missing. Here we use generators of extraspecial 2-groups to obtain the W state in a four-qubit space and partition algebras to generate the W state in a three-qubit space. We also present a unitary generalized Yang-Baxter operator that embeds the W_n state in a (2n-1)-qubit space.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"20 1","pages":"1153-1161"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/QIC20.13-14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Braiding operators can be used to create entangled states out of product states, thus establishing a correspondence between topological and quantum entanglement. This is well-known for maximally entangled Bell and GHZ states and their equivalent states under Stochastic Local Operations and Classical Communication, but so far a similar result for W states was missing. Here we use generators of extraspecial 2-groups to obtain the W state in a four-qubit space and partition algebras to generate the W state in a three-qubit space. We also present a unitary generalized Yang-Baxter operator that embeds the W_n state in a (2n-1)-qubit space.
用编织算子生成W个状态
编织算子可以在积态之外产生纠缠态,从而建立拓扑纠缠和量子纠缠的对应关系。这是众所周知的最大纠缠贝尔和GHZ状态及其在随机局部操作和经典通信下的等效状态,但到目前为止还没有W状态的类似结果。在这里,我们使用特殊的2群生成器来获得四量子位空间中的W态,并使用分区代数来生成三量子位空间中的W态。我们还提出了一个将W_n态嵌入到(2n-1)-量子比特空间中的酉广义Yang-Baxter算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信